检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
除了最大似然估计,还有其他的归纳准则,其中许多共享一致估计的性质。然而,一致估计的统计效率(statistic efficiency) 可能区别很大。某些一致估计可能会在固定数目的样本上获得一个较低的泛化误差,或者等价地,可能只需要较少的样本就能达到一个固定程度的泛化误差。通常,统计效率研究于有参情况(parametric
3/1659535760107353372.png) 好了我们上面说的是最简单的情况,因为为了学习,是一个权重或叫参数w,一个自变量x,并且只有一个观测点(x,y)。 在实际情况中,一般就不仅仅是学习的那么简单的情况。 数据会包含多个自变量,多个权重,很多个观测点。 用 $L(w)=L(w_1
而在指定转换的方向抵抗扰动。虽然这种解析方法是聪明优雅的,但是它有两个主要的缺点。首先,模型的正则化只能抵抗无穷小的扰动。显式的数据集增强能抵抗较大的扰动。其次,我们很难在基于整流线性单元的模型上使用无限小的方法。这些模型只能通过关闭单元或缩小它们的权重才能缩小它们的导数。它们不
差较大的现象。欠拟合与过拟合的区别:欠拟合在训练集和测试集上的性能都较差,而过拟合往往能较好地学习训练集数据的性质,而在测试集上的性能较差。在神经网络训练的过程中,欠拟合主要表现为输出结果的高偏差,而过拟合主要表现为输出结果的高方差。机器学习的目标:是使学得的模型能够很好的适用于
aggregating)是通过结合几个模型降低泛化误差的技术(Breiman, 1994)。主要想法是分别训练几个不同的模型,然后让所有模型表决测试样例的输出。这是机器学习中常规策略的一个例子,被称为模型平均(model averaging)。采用这种策略的技术被称为集成方法。模型平均(model
当计算图变得极深时,神经网络优化算法会面临的另外一个难题就是长期依赖问题——由于变深的结构使模型丧失了学习到先前信息的能力,让优化变得极其困难。深层的计算图不仅存在于前馈网络,还存在于之后介绍的循环网络中(在第十章中描述)。因为循环网络要在很长时间序列的各个时刻重复应用相同操作来构建非常深的计算图,并且模型
随着数据隐私和安全问题日益受到重视,联邦学习作为一种保护数据隐私的新兴技术,逐渐引起了广泛关注。通过在本地设备上训练模型并仅共享模型参数,联邦学习可以在保证数据隐私的前提下,实现高效的分布式模型训练。 II. 联邦学习概述 1. 联邦学习的基本概念 联邦学习的核心理念是将数据保存在本地设
目录 先来看机器学习: 什么是特征? 深度学习是表示学习的经典代表: 深度学习的过程: 深度学习与传统机器学习差别: 深度学习代表算法: 先来看机器学习: 机器学习是利用经验experience来改善 计算机系统自身的性能,通过经验获取知识knowledge。 以往都是人们向
因变量的常见数据类型有三种:定量数据、二分类定性数据和多分类定性数据。输出层激活函数的选择主要取决于因变量的数据类型。MNIST数据集是机器学习文献中常用的数据。因变量(0~9)用独热码表示,比如数字8的独热码为(0 0 0 0 0 0 0 0 1 0)数字2的读热码为(0 0 1
经过这段时间对Python的学习,我对Python有了一定的认识,老师讲得很详细,我也很享受对Python的学习。学习Python需要去听课程也更需要多多实操,学习事物需要持之以恒,我以后也会坚持学习Python的
证据回归网络(ENet)估计一个连续目标及其预测的不确定性,无需昂贵的贝叶斯模型平均。然而,由于ENet原始损失函数的梯度收缩问题,即负对数边际似然损失,有可能导致目标预测不准确。本文的目标是通过解决梯度收缩问题来提高ENet的预测精度,同时保持其有效的不确定性估计。一个多任务学习(MTL)框架,被称为M
入探讨迁移学习的基本概念、方法以及实际应用。 什么是迁移学习? 迁移学习是一种通过转移已学知识来解决新问题的学习方法。传统的深度学习模型通常从零开始训练,需要大量标注数据来学习数据的特征。然而,在许多实际应用中,我们往往面临以下挑战: 数据稀缺:在许多任务中,获得大量标注数据可能非常昂贵或耗时。
在有限区间中均匀分布。许多先验偏好于“更简单” 的解决方法(如小幅度的系数,或是接近常数的函数)。 贝叶斯估计通常使用的情况下,先验开始是相对均匀的分布或高熵的高斯分布,观测数据通常会使后验的熵下降,并集中在参数的几个可能性很高的值。
表明,这些对抗样本的主要原因之一是过度线性。神经网络主要是基于线性块构建的。因此在一些实验中,它们实现的整体函数被证明是高度线性的。这些线性函数很容易优化。不幸的是,如果一个线性函数具有许多输入,那么它的值可以非常迅速地改变。如果我们用 ϵ 改变每个输入,那么权重为w 的线性函数可以改变
在有限区间中均匀分布。许多先验偏好于“更简单” 的解决方法(如小幅度的系数,或是接近常数的函数)。 贝叶斯估计通常使用的情况下,先验开始是相对均匀的分布或高熵的高斯分布,观测数据通常会使后验的熵下降,并集中在参数的几个可能性很高的值。
这和其他的子符号方法,如模糊控制和进化计算,都属于计算智能学科研究范畴。统计学法90年代,人工智能研究发展出复杂的数学工具来解决特定的分支问题。这些工具是真正的科学方法,即这些方法的结果是可测量的和可验证的,同时也是人工智能成功的原因。共用的数学语言也允许已有学科的合作(如数学,经济或运筹学)。STUART
V2)并结合不同的特征提取器(Resnet V1 50, Resnet V1 101, Inception V2, Inception Resnet V2, Mobilenet V1和Darknet-19)的最新进展。我们的目的是通过迁移学习的方法来探讨这些对象检测模型的特性,这些模
权重比例推断规则在其他设定下也是精确的,包括条件正态输出的回归网络以及那些隐藏层不包含非线性的深度网络。然而,权重比例推断规则对具有非线性的深度模型仅仅是一个近似。虽然这个近似尚未有理论上的分析,但在实践中往往效果很好。Goodfellow et al. (2013b) 实验发现
7版本或其他版本的,根据自己的需要下载合适的安装包。下载链接:https://www.anaconda.com/download/#linux点击下面的64-Bit (x86) Installer (522 MB),下载64位的版本。下载完后的文件名是:Anaconda3-2020.02-Linux-x86_64
深度神经网络设计中的一个重要方面是代价函数的选择。幸运的是,神经网络的代价函数或多或少是和其他的参数模型例如线性模型的代价函数相同的。 在大多数情况下,我们的参数模型定义了一个分布 p(y | x; θ) 并且我们简单地使用最大似然原理。这意味着我们使