检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
910-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asce
911-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asce
model parallel size)=1 PP(pipeline model parallel size)=4 1 1*节点 & 8*Ascend lora TP(tensor model parallel size)=1 PP(pipeline model parallel size)=4
将AscendSpeed代码包AscendCloud-LLM-xxx.zip在本地解压缩后。在上传代码前,需要对解压后的训练脚本代码进行修改。具体文件为:llm_train/AscendSpeed/scripts/obs_pipeline.sh,具体修改代码内容以及位置,如下所示。 训练作
址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
如下图所示,使用MindSpore Lite生成的图像和onnx模型的输出结果有明显的差异,因此需要对MindSpore Lite pipeline进行精度诊断。 图1 结果对比 在MindSpore Lite 2.0.0版本中,Stable Diffusion的五个模型的精度都能够保证一致性,但是在最新的2
同调整参数target-tensor-parallel-size,默认为1。 --target-pipeline-parallel-size :任务不同调整参数target-pipeline-parallel-size,默认为1。 输出转换后权重文件保存路径: 权重转换完成后,在
同调整参数target-tensor-parallel-size,默认为1。 --target-pipeline-parallel-size :任务不同调整参数target-pipeline-parallel-size,默认为1。 输出转换后权重文件保存路径: 权重转换完成后,在
同调整参数target-tensor-parallel-size,默认为1。 --target-pipeline-parallel-size :任务不同调整参数target-pipeline-parallel-size,默认为1。 输出转换后权重文件保存路径: 权重转换完成后,在
docker-runc.aarch64 配置IP转发,用于容器内的网络访问。执行以下命令查看net.ipv4.ip_forward配置项的值,如果为1,可跳过此步骤。 sysctl -p | grep net.ipv4.ip_forward 如果net.ipv4.ip_forward配置项的值不为1,执行以下命令配置IP转发。
可遵循以下步骤操作。 步骤一:资源下载 Python依赖包下载:进入 scripts/install.sh 文件中,找到需要安装的pip文件,如下列所示。直接下载pip文件,注意:下载要求的版本。 pip install numpy==1.22.0 \ t
--benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
--benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
--benchmark-csv benchmark_parallel.csv 参数说明 --host:服务部署的IP,${docker_ip}替换为宿主机实 际的IP地址。 --port:推理服务端口。 --tokenizer:tokenizer路径,HuggingFace的权重路径。
本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.908-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。
本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码、推理依赖的算子包。代码包具体说明请参见模型软件包结构说明。
获取模型软件包,并上传到ECS的目录下(可自定义路径),获取地址参考表1。 解压AscendCloud压缩包及该目录下的训练代码AscendCloud-LLM-xxx.zip,并直接进入到llm_train/AscendSpeed文件夹下面 cd ./llm_train/AscendSpeed 编辑llm_tr
912-xxx.zip,并直接进入到llm_train/AscendFactory文件夹下面 unzip AscendCloud-*.zip -d ./AscendCloud && unzip ./AscendCloud/AscendCloud-LLM-*.zip -d ./Asc