检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
据的交互式快速查询场景。 HetuEngine跨源功能简介 出于管理和信息收集的需要,企业内部会存储海量数据,包括数目众多的各种数据库、数据仓库等,此时会面临数据源种类繁多、数据集结构化混合、相关数据存放分散等困境,导致跨源查询开发成本高,跨源复杂查询耗时长。 HetuEngin
调整DataNode磁盘坏卷信息 配置场景 在开源版本中,如果为DataNode配置多个数据存放卷,默认情况下其中一个卷损坏,则DataNode将不再提供服务。用户可以通过修改配置项“dfs.datanode.failed.volumes.tolerated”的值,指定失败的个数
一个wordcount作业的操作指导。wordcount是最经典的Hadoop作业,用于统计海量文本的单词数量。 Hadoop集群完全使用开源Hadoop生态,采用Yarn管理集群资源,提供Hive、Spark离线大规模分布式数据存储和计算及进行海量数据分析与查询的能力。 操作流程
化。Storm与其他组件的关系如图1所示: 图1 组件关系图 Storm和Streaming的关系 Storm和Streaming都使用的开源Apache Storm内核,不同的是,Storm使用的内核版本是1.2.1,Streaming使用的是0.10.0。Streaming组
Presto Presto是一个开源的用户交互式分析查询的SQL查询引擎,用于针对各种大小的数据源进行交互式分析查询。其主要应用于海量结构化数据/半结构化数据分析、海量多维数据聚合/报表、ETL、Ad-Hoc查询等场景。 Presto允许查询的数据源包括Hadoop分布式文件系统
名、表描述支持中文,其余暂不支持。 Hive支持开源MySQL和Postgres元数据库。 安装开源MySQL或Postgres数据库。 数据库安装节点需与集群处于同一网段,能互相访问。 上传驱动包。 Postgres: 使用开源驱动包替换集群已有的驱动包。将Postgres驱动包“postgresql-42
用权限,授予不同用户。 Kafka默认用户组如表1所示。 Kafka支持两种鉴权插件:“Kafka开源自带鉴权插件”和“Ranger鉴权插件”。 本章节描述的是基于“Kafka开源自带鉴权插件”的用户权限管理。如果想使用 “Ranger鉴权插件”,请参考添加Kafka的Ranger访问权限策略。
YARN基本原理 为了实现一个Hadoop集群的集群共享、可伸缩性和可靠性,并消除早期MapReduce框架中的JobTracker性能瓶颈,开源社区引入了统一的资源管理框架YARN。 YARN是将JobTracker的两个主要功能(资源管理和作业调度/监控)分离,主要方法是创建一个
Spark基本原理 Spark简介 Spark是一个开源的,并行数据处理框架,能够帮助用户简单、快速的开发大数据应用,对数据进行离线处理、流式处理、交互式分析等。 Spark提供了一个快速的计算、写入及交互式查询的框架。相比于Hadoop,Spark拥有明显的性能优势。Spark
差异,例如JobHistory2x变更为JobHistory。 相关涉及服务名称、角色名称的描述和操作请以实际版本为准。 Spark是一个开源的,并行数据处理框架,能够帮助用户简单、快速的开发大数据应用,对数据进行离线处理、流式处理、交互式分析等。 相比于Hadoop,Spark拥有明显的性能优势。
本入门提供从零开始创建ClickHouse集群并通过集群客户端进行ClickHouse表的创建与查询操作指导。 ClickHouse是一款开源的面向联机分析处理的列式数据库,独立于Hadoop大数据体系,具有压缩率和极速查询性能。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。
5版本进行购买。 商用 MRS组件版本一览表 2020年11月 序号 功能名称 功能描述 阶段 相关文档 1 全新大数据组件升级 MRS 3.x版本针对开源组件进行了大面积升级,提供最新能力,并在社区基础上对功能、性能、可靠性等方面进行了增强。 商用 MRS组件版本一览表 2 支持ClickHouse集群
Alluxio应用开发简介 Alluxio简介 Alluxio是一个面向基于云的数据分析和人工智能的开源的数据编排技术。它为数据驱动型应用和存储系统构建了桥梁, 将数据从存储层移动到距离数据驱动型应用更近的位置,从而能够更容易、更快地被访问。同时使得应用程序能够通过一个公共接口连接到许多存储系统。
Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pipeline处理数据,时延毫秒级,且兼具可靠性。
figFiles\Flink\config”,获取相关配置文件。 获取样例工程 通过开源镜像站获取样例工程。 下载样例工程的Maven工程源码和配置文件,并在本地配置好相关开发工具,可参考通过开源镜像站获取样例工程。 根据集群版本选择对应的分支,下载并获取MRS相关样例工程。 例
Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pipeline处理数据,时延毫秒级,且兼具可靠性。
Sqlline接口介绍 可以直接使用sqlline.py在服务端对HBase进行SQL操作。Phoenix的sqlline接口与开源社区保持一致,请参见http://phoenix.apache.org/。 Sqlline常用语法见表1,常用函数见表2,命令行使用可以参考Phoenix命令行操作介绍章节。
Sqlline接口介绍 用户可以直接使用sqlline.py在服务端对HBase进行SQL操作。 Phoenix的sqlline接口与开源社区保持一致。 详情请参见http://phoenix.apache.org/。 父主题: HBase对外接口介绍
Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pipeline处理数据,时延毫秒级,且兼具可靠性。
Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pipeline处理数据,时延毫秒级,且兼具可靠性。