检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
OLAP数据库二次开发和管理能力的高级工程师华为认证培训华为云数据仓库高级工程师培训培养具有分布式数据库集群开发和运维能力的高级工程师,以及对数据库领域相关人员进行技能提升。课程内容:深入讲解GaussDB DWS数据仓库架构、数据库设计与管理、数据迁移、数据库的运维与调优,数据库
OLAP数据库二次开发和管理能力的高级工程师华为认证培训华为云数据仓库高级工程师培训培养具有分布式数据库集群开发和运维能力的高级工程师,以及对数据库领域相关人员进行技能提升。课程内容:深入讲解GaussDB DWS数据仓库架构、数据库设计与管理、数据迁移、数据库的运维与调优,数据库
数据仓库(07)数据仓库(07)数仓规范设计 数据仓库(08)数据仓库(08)数仓事实表和维度表技术 数据仓库(09)数据仓库(09)数仓缓慢变化维度数据的处理 数据仓库(10)数据仓库(10)数仓拉链表开发实例 数据仓库(11)数据仓库(11)什么是大数据治理,数据治理的范围是哪些 数据仓库(12)数据仓库(12)数据治理之数仓数据管理实践心得
文章目录 数据仓库 什么是数据仓库? 数据库与数据仓库的区别? 事实表和维度表 数据仓库的数据模型: 为什么数据仓库要分层? 数据仓库模式:Kimball (金箔)和 Inmon(恩门)
什么是数据仓库服务 数据仓库服务GaussDB(DWS) 是一种基于华为云基础架构和平台的在线数据处理数据库,提供即开即用、可扩展且完全托管的分析型数据库服务。GaussDB(DWS)是基于华为融合数据仓库GaussDB产品的云原生服务 ,兼容标准ANSI SQL 99和SQL
数据仓库相比数据库,主要有以下两个特点: 数据仓库是面向主题集成的。数据仓库是为了支撑各种业务而建立的,数据来自于分散的操作型数据。因此需要将所需数据从多个异构的数据源中抽取出来,进行加工与集成,按照主题进行重组,最终进入数据仓库。
用户都存储的什么信息。 数据仓库 数据仓库:数据仓库系统的主要应用主要是OLAP(On-Line Analytical Processing),支持复杂的分析操作,侧重决策支持,并且提供直观易懂的查询结果。 数据仓库汇总有可能有很多维度数据的统计分析结果
数据仓库相比数据库,主要有以下两个特点: 数据仓库是面向主题集成的。数据仓库是为了支撑各种业务而建立的,数据来自于分散的操作型数据。因此需要将所需数据从多个异构的数据源中抽取出来,进行加工与集成,按照主题进行重组,最终进入数据仓库。
数据仓库是商业智能(业务智能、BI)的基础。概念看起来简单,把数据存在静态的仓库里头以便多个维度分析,但实现和应用较复杂困难。几个值得注意的要点:1)数据仓库跟业务执行系统的管理要点完全不同。按事实和维度存储,减少执行流程和执行角色的干扰2)数据仓库要基于精准的业务需要来建立,系
且稳定。 一个良好的规范设计,应当起到以下作用:提高开发效率,提升质量,降低沟通对齐成本,降低运维成本等。 下面小编将带领大家盘一盘数据仓库有哪些规范,从中挑选几个重点细说: 设计规范 逻辑
创建数据仓库GaussDB(DWS) 参见“创建集群”章节创建GaussDB(DWS)数据仓库。创建成功后,记录集群的内网IP。 为确保ECS与GaussDB(DWS)网络互通,GaussDB(DWS)数据仓库需要与ECS在同一个区域,同一个虚拟私有云和子网下。 表1 DWS规格
如何快速构建跨云、跨边、跨集群的云原生应用? 如何快速构建兼容多种推理框架的高性能AI应用? 2022年6月16日在华为伙伴暨开发者大会上,华为云公布四大重磅开源项目, 旨在帮助开发者解决上述问题。 openGemini:openGemini Kurator:kurator-dev ·
关于数据环境: 数据仓库开发最好是以反复的方式进行。首先建立数据仓库的一部分,然后再建立另一部分。即出现所谓的CLDS的数据驱动的开发生命周期,区别于传统的需求驱动开发生命周期(SDLC)。 粒度的选择: 一般采用双重粒度或建立活样本数据库。
跨云、跨边、跨集群的云原生应用?如何快速构建兼容多种推理框架的高性能AI应用?2022年6月16日在华为伙伴暨开发者大会上,华为云公布四大重磅开源项目, 旨在帮助开发者解决上述问题。openGemini:openGeminiKurator:kurator-dev · GitHubKappital:Kappital
在介绍Lambda和Kappa架构之前,我们先回顾一下数据仓库的发展历程: 传送门-数据仓库发展历程 写在前面 咳,随着数据量的暴增和数据实时性要求越来越高,以及大数据技术的发展驱动企业不断升级迭代,数据仓库架构方面也在不断演进,分别经历了以下过程:早期经典数仓架构 >
企业级数据仓库(EDW,1991)1991年,BillInmon出版了其有关数据仓库的第一本书,这本书不仅仅说明为什么要建数据仓库、数据仓库能给你带来什么,更重要的是,Inmon第一次提供了如何建设数据仓库的指导性意见,该书定义了数据仓库非常具体的原则,包括:数据仓库是面向主题的(Subject-Oriente
于是数据仓库需要分层。 数据仓库分层的原因 1、用空间换时间,通过数据预处理提高效率,通过大量的预处理可以提升应用系统的用户体验(效率),但是数据仓库会存在大量冗余的数据. 2、增强可扩展性,方便以后业务的变更。如果不分层的话,当源业务系统的业务规则发生变化整个数据仓库需要重
数据仓库规格 GaussDB(DWS)的规格按照产品类型分为标准数仓和实时数仓。其中实时数仓还包含单机版模式。各产品类型的不同差异,详情请参见数据仓库类型。 低配置集群,如内存16G、vCPU4核及以下的规格,建议不要用于生产环境,可能会导致资源过载风险。 标准数仓(DWS 2.0)规格
数据仓库类型 产品类型概述 标准数仓(DWS 2.0):面向数据分析场景,为用户提供高性能、高扩展、高可靠、高安全、易运维的企业级数仓服务,支持2048节点、20PB级超大规模数据分析能力,适用于“库、仓、市、湖”一体化的融合分析业务。 标准数仓(DWS 3.0):采用存算分离云
从数据源的采集到多层清洗加工的过程中,数据仓库的数据逻辑分层一般分为4层。 分层的核心思想就是解耦。 ODS Operation Data Store 原始数据层,也有叫贴源层,该层对采集的原始数据进行原样存储。 DWD Data Warehouse Detail 明细数据层,对ODS进行清洗,解决数据质量问题。
于是数据仓库需要分层。 数据仓库分层的原因 1、用空间换时间,通过数据预处理提高效率,通过大量的预处理可以提升应用系统的用户体验(效率),但是数据仓库会存在大量冗余的数据. 2、增强可扩展性,方便以后业务的变更。如果不分层的话,当源业务系统的业务规则发生变化整个数据仓库需要重
临时转储数据仓库
了解更多常见问题、案例和解决方案 热门案例 数据库、数据仓库、数据湖、湖仓一体分别是什么? 为什么要使用云数据仓库服务GaussDB(DWS)? 无法连接数据仓库集群时怎么处理? 如何选择公有云DWS或者公有云RDS? 数据在数据仓库服务中是否安全? 如何清理与回收存储空间? 更多 数据库连接