检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
单机8卡吞吐量一般为1650tokens/s/p,双机16卡吞吐量一般为1625tokens/s/p。
计算公式如下: 升配费用 = 新配置价格 * 剩余周期 - 旧配置价格 * 剩余周期 公式中的剩余周期为周期内每个自然月的剩余天数/对应自然月的最大天数之和。
开启该功能会略微增加首Token时间,但可以提升推理吞吐量。 export DEFER_MS=10 # 延迟解码时间,默认值为10,单位为ms。将Token解码延迟进行的毫秒数,使得当次Token解码能与下一次模型推理并行计算,从而减少总推理时延。
对于词表较小的模型(如llama2系模型),关闭并行可以减少推理时延,对于词表较大的模型(如qwen系模型),开启并行可以减少显存占用,以提升推理吞吐量。
计算规格说明 AI Gallery提供了多种计算规格供用户按需选用。只要用户的账号费用充足,就可以持续使用资源,详细计费说明请参见计费说明。 计费说明 AI Gallery的计费规则如表1所示。 表1 计费说明 规则 说明 话单上报规则 仅当AI Gallery工具链服务创建成功且实际开始运行时
总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和
总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1以内(计算公式:(47-46.6) < 1,)认为NPU精度和GPU对齐。
对于词表较小的模型(如llama2系模型),关闭并行可以减少推理时延,对于词表较大的模型(如qwen系模型),开启并行可以减少显存占用,以提升推理吞吐量。
本地存储 重型训练作业首选 运行所在虚拟机或者裸金属机器上自带的SSD高性能存储,文件读写的吞吐量大,建议对于重型训练作业先将数据准备到对应目录再启动训练。
对于词表较小的模型(如llama2系模型),关闭并行可以减少推理时延,对于词表较大的模型(如qwen系模型),开启并行可以减少显存占用,以提升推理吞吐量。
对于词表较小的模型(如llama2系模型),关闭并行可以减少推理时延,对于词表较大的模型(如qwen系模型),开启并行可以减少显存占用,以提升推理吞吐量。
计算公式是有假设的: 总线带宽 = 算法带宽 * 2 ( N-1 ) / N ,算法带宽 = 数据量 / 时间 但是这个计算公式的前提是用Ring算法,Tree算法的总线带宽不可以这么计算。 如果Tree算法算出来的总线带宽相当于是相对Ring算法的性能加速。
总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和
总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1以内(计算公式:(47-46.6) < 1)认为NPU精度和GPU对齐。
总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和
总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和
对于词表较小的模型(如llama2系模型),关闭并行可以减少推理时延,对于词表较大的模型(如qwen系模型),开启并行可以减少显存占用,以提升推理吞吐量。
总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1以内(计算公式:(47-46.6) < 1)认为NPU精度和GPU对齐。
总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1以内(计算公式:(47-46.6) < 1)认为NPU精度和GPU对齐。
总体打分结果参考txt和csv文件的最后一行,举例如下: npu: mmlu:46.6 gpu: mmlu:47 NPU打分结果(mmlu取值46.6)和GPU打分结果(mmlu取值47)进行对比,误差在1%以内(计算公式:(47-46.6)/47*100=0.85%)认为NPU精度和