检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
/home/ma-user/etc/ssh_host_rsa_key0 将准备好的sshd启动脚本文件上传至OBS的训练代码目录下。 创建自定义镜像训练作业。 “代码目录”选择存有sshd启动脚本文件的OBS地址。 “启动命令”需要适配sshd启动脚本,如下所示: bash ${MA
校验csv文件,将多出字段的行删除。 在代码中忽略错误行,参考如下: import pandas as pd pd.read_csv(filePath,error_bad_lines=False) 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。
准备预测分析数据 使用ModelArts自动学习构建预测分析模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域,例如OBS桶区域为“北京四”时,必须保证ModelArts管理控制台区域也在“北京四”区域,否则会导致无法获取到相关数据。 数据集要求
查看Workflow工作流运行记录 运行记录是展示某条工作流所有运行状态数据的地方。 在Workflow列表页,单击某条工作流的名称,进入该工作流的详情页面。 在工作流的详情页,左侧区域即为该条工作流的所有运行记录。 图1 查看运行记录 您可以对当前工作流的所有运行记录,进行删除、编辑以及重新运行的操作。
开发Workflow的核心概念介绍 Workflow Workflow是一个有向无环图(Directed Acyclic Graph,DAG),由节点和节点之间的关系描述组成。 图1 Workflow介绍 节点与节点之间的依赖关系由单箭头的线段来表示,依赖关系决定了节点的执行顺序
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
code文件名冲突: 重命名当前工作目录下和创建kernel依赖的库文件冲突的文件名称。 常见容易冲突的文件:code.py、select.py。 父主题: 代码运行故障
execution_code 执行代码存放的OBS地址,默认值为空,名称固定为“customize_service.py”。 推理代码文件需存放在模型“model”目录。该字段不需要填,系统也能自动识别出model目录下的推理代码。 否 str dependencies 推理代码及模型需安装的包,默认为空。从配置文件读取。
创建预测分析项目 ModelArts自动学习,包括图像分类、物体检测、预测分析、声音分类和文本分类项目。您可以根据业务需求选择创建合适的项目。您需要执行如下操作来创建自动学习项目。 创建项目 登录ModelArts管理控制台,在左侧导航栏单击“开发空间>自动学习”,进入新版自动学习页面。
创建项目时,如何快速创建OBS桶及文件夹? 在创建项目时需要选择训练数据路径,本章节将指导您如何在选择训练数据路径时,快速创建OBS桶和OBS文件夹。 在创建自动学习项目页面,单击数据集输入位置右侧的“”按钮,进入“数据集输入位置”对话框。 单击“新建对象存储服务(OBS)桶”,
准备声音分类数据 使用ModelArts自动学习构建模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域。 声音分类的数据要求 音频只支持16bit的WAV格式。支持WAV的所有子格式。 单条音频时长应大于1s,大小不能超过4MB。 适当
准备文本分类数据 使用ModelArts自动学习构建模型时,您需要将数据上传至对象存储服务(OBS)中。OBS桶需要与ModelArts在同一区域。 数据集要求 文件格式要求为txt或者csv,文件大小不能超过8MB。 以换行符作为分隔符,每行数据代表一个标注对象。 文本分类目前只支持中文。
部署文本分类服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行总览”页面中,待服务部署节点的状态变为“等待输入”,双击“服务部署”节点,进入配置详情页,完成资源的参数配置操作。
创建Workflow数据集节点 功能介绍 通过对ModelArts数据集能力进行封装,实现新版数据集的创建功能。主要用于通过创建数据集对已有数据(已标注/未标注)进行统一管理的场景,后续常见数据集导入节点或者数据集标注节点。 属性总览 您可以使用CreateDatasetStep
SPEECH_SEGMENTATION DATASET_TABULAR VIDEO_ANNOTATION FREE_FORMAT Workflow数据集标注节点代码样例 主要包含三种场景的用例: 场景一:基于用户指定的数据集创建标注任务,并等待用户标注完成。 使用场景: 用户只创建了一个未标注完成的数
标注声音分类数据 项目创建完成后,将会自动跳转至新版自动学习页面,并开始运行,当数据标注节点的状态变为“等待操作”时,需要手动进行确认数据集中的数据标注情况,也可以对数据集中的数据进行标签的修改,数据的增加或删减。 图1 数据标注节点状态 音频标注 在新版自动学习页面单击“实例详
部署声音分类服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行总览”页面中,待服务部署节点的状态变为“等待输入”时,双击“服务部署”进入配置详情页,完成资源的参数配置操作。
自动学习生成的模型,存储在哪里?支持哪些其他操作? 模型统一管理 针对自动学习项目,当模型训练完成后,其生成的模型,将自动进入“模型管理”页面,如下图所示。模型名称由系统自动命名,前缀与自动学习项目的名称一致,方便辨识。 自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型
print(engine_dict) 使用案例 主要包含七种场景的用例: 使用订阅自AI Gallery的算法 使用算法管理中的算法 使用自定义算法(代码目录+启动文件+官方镜像) 使用自定义算法(代码目录+脚本命令+自定义镜像) 基于数据集版本发布节点构建作业类型节点 作业类型节点结合可视化能力 输入使用Data
Workflow通过支持预置场景的方式来实现部分运行的能力,在开发工作流时按照场景的不同对DAG进行划分,之后在运行态可选择任意场景单独运行。具体代码示例如下所示: workflow =wf.Workflow( name="image_cls", desc="this is