检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何关闭Mox的warmup 问题现象 训练作业mox的Tensorflow版本在运行的时候,会先执行“50steps” 4次,然后才会开始正式运行。 warmup即先用一个小的学习率训练几个epoch(warmup),由于网络的参数是随机初始化的,如果一开始就采用较大的学习率会出现数值不稳定的问题,这是使用warm
req_count_per_min Long 服务分钟调用量,这里指当前时间上一分钟的服务调用总量。 表5 Monitor 参数 参数类型 描述 failed_times Integer 模型实例调用失败次数,在线服务字段。 model_version String 模型版本,在线服务字段。
查询推理服务标签 功能介绍 查询当前项目下的推理服务标签,默认查询所有工作空间,无权限不返回标签数据。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1
查询APP是否存在 功能介绍 查询APP是否存在。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/app-auth/apps/{app_name}/exists
PoolSpecUpdate 参数 是否必选 参数类型 描述 scope 否 Array of strings 更新启用的作业类型。可选值如下: Train:训练作业 Infer:推理作业 Notebook:Notebook作业 resources 否 Array of resources objects
/v2/{project_id}/trainJob/{training_job_id}/tags/delete 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String
批量删除节点 功能介绍 批量删除指定资源池中的节点,资源池中至少保留一个节点。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_i
在模型广场查看模型 在模型广场页面,ModelArts Studio大模型即服务平台提供了丰富的开源大模型,在模型详情页可以查看模型的详细介绍,根据这些信息选择合适的模型进行训练、推理,接入到企业解决方案中。 访问模型广场 登录ModelArts管理控制台。 在左侧导航栏中,选择“ModelArts
动态shape 在某些推理场景中,模型输入的shape可能是不固定的,因此需要支持用户指定模型的动态shape,并能够在推理中接收多种shape的输入。在CPU上进行模型转换时无需考虑动态shape问题,因为CPU算子支持动态shape;而在Ascend场景上,算子需要指定具体的
报错“Host key verification failed.'或者'Port forwarding is disabled.”如何解决? 问题现象 或 原因分析 Notebook实例重新启动后,公钥发生变化,OpenSSH核对公钥发出警告。 解决方法 在VS Code中使用命令方式进行远程连接时,增加参数"-o
DataConsumptionSelector(data_list=[job_step_a.outputs["train_url"].as_input(), job_step_b.outputs["train_url"].as_input()])), # 选择job_step_a或者job_step_b的输出作为输入
desc="this is a demo workflow", steps=[label_step, release_data_step, training_step, model_step, service_step], policy=wf.policy.Policy(
标注图像分类数据 由于模型训练过程需要大量有标签的图片数据,因此在模型训练之前需对没有标签的图片添加标签。通过ModelArts您可对图片进行一键式批量添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。 请确保数据集中已标注的图片不低于100张,否
部署图像分类服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待服务部署节点的状态变为“等待输入”时,双击“服务部署”进入配置详情页,完成资源的参数配置操作。
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
模型名称。 model_version String 模型版本。 invocation_times Number 模型实例的总调用次数。 failed_times Number 模型实例调用失败次数。 cpu_core_usage Float 已使用CPU核数。 cpu_core_total
从OBS下载文件 示例代码 在ModelArts Notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参考Session鉴权。 1 2 3 from modelarts.session import Session session = Session()
如何查看ModelArts消费详情? 在“费用中心”,您可以根据需求按照账期、产品类型等查询ModelArts的消费详情。本章节以查询“账单详情”为例指导您查看计费情况,如需了解更多的账单情况,请参见查看费用账单。 查询方法: 单击右上方的“费用中心 > 费用账单”进入费用中心详情页面,在左侧导航栏选择“账单管理
/v2/{project_id}/training-jobs/{training_job_id} 表1 路径参数 参数 是否必选 参数类型 描述 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 training_job_id 是 String
scope 是 Array of strings 资源池支持的作业类型。用户创建标准资源池时至少选择一种,物理资源池支持全部选择。可选值如下: Train:训练作业 Infer:推理作业 Notebook:Notebook作业 resources 是 Array of PoolResourceFlavor