检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
n_paths算法(n_paths) 功能介绍 根据输入参数,执行n_paths算法。 n_paths算法用于寻找图中两节点之间在层关系内的n条路径。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm 表1 路径参数
业务面API认证鉴权 调用GES业务面API只能通过Token认证调用请求。 Token认证 Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。
新建数据迁移任务 前提条件 已确认数据源数据库中各表对应的点边类型。 操作步骤 登录图引擎服务管理控制台,在左侧导航栏中选择“数据迁移”。 在“数据迁移”页签单击“新建”。 图1 新建数据迁移 设置数据源配置参数。 任务名称:自定义名称,不能与已有任务名称重复,长度在4位到50位
执行DSL算法 功能介绍 提供灵活的DSL帮助用户低成本设计并运行算法。DSL算法详细介绍请参考DSL语法说明。 DSL算法执行结束后,用户需使用HyG算法结果转存API将DSL执行结果转存到OBS上。转存之后,您可以通过stdout等文件查看算法结果,由于HyG图是分布式的,结果文件可能有多个,对应不同分区的结果。
动态图数据格式 在大多数实际生活场景中,实体以及关系是动态变化的(如疫情传播网络、转账关系等),这些时序、变化背后蕴含的信息会对结果产生重要影响,因此需要采用动态图对其进行数据建模、存储和动态分析。本服务对动态图的相关能力进行了支持。 图1 动态图示例 本章节重点介绍动态图数据格
一般图数据格式 在导入图数据之前,您需要了解GES中支持的图数据格式。 GES仅支持载入具有标准CSV格式的原始图数据,如果您的原始数据并不符合指定的格式,则需要将数据整理为GES支持的格式。 GES支持的图数据格式包含三部分:点文件、边文件以及元数据。 点文件用于存放点数据。 边文件用于存放边数据。
客户端连接参数 Java import com.huaweicloud.sdk.core.http.HttpConfig; // 使用默认配置 HttpConfig config = HttpConfig.getDefaultHttpConfig(); // 默认连接超时时间为60秒,可根据需要调整
批量添加label(2.2.21) 功能介绍 批量添加label。 URI POST /ges/v1.0/{project_id}/graphs/{graph_name}/schema/labels/action?action_id=batch-add 表1 路径参数 参数 是否必选
Gremlin查询 Gremlin是Apache Tinkerpop框架中使用的图遍历语言,使用Gremlin可以很方便的对图数据进行查询,进行图的修改、局部遍历和属性过滤等。 具体操作步骤如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 在图数据查询区,单击下拉按
密码认证 Java import com.huawei.ges.graph.v1.GESGraphClient; import com.huaweicloud.sdk.iam.v3.region.IamRegion; import com.huawei.ges.graph.v1.auth
topicrank算法(topicrank) 功能介绍 根据输入参数,执行TopicRank算法。 TopicRank算法12345热线多维度话题排序算法之一,适用于政务12345热线投诉话题排序。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
查询边详情 功能介绍 根据边的起点、终点以及索引,查询边的详细信息,返回边上的标签和属性等。 URI GET /ges/v1.0/{project_id}/graphs/{graph_name}/edges/detail?source={sourceVertex}&target=
查询边详情(1.0.0) 功能介绍 根据边的起点、终点以及索引,查询边的详细信息,返回边上的标签和属性等。 URI GET /ges/v1.0/{project_id}/graphs/{graph_name}/edges/detail?source={sourceVertex}&
关联预测算法(link_prediction) 功能介绍 根据输入参数,执行link_prediction算法。 关联预测算法(link_prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 URI POST /ges/v1
统计信息展示 通过框选画布中点和边,在统计信息区会显示出当前所框选的点边对应的标签和节点权重的数量。关于点和边的概念请参考图数据格式。 统计信息展示的具体操作如下: 进入图引擎编辑器页面,详细操作请参见访问图引擎编辑器。 单击绘图区右侧的,显示“条件过滤、属性和统计信息”页面,单击“统计信息”页签。
聚类系数算法(cluster_coefficient) 功能介绍 根据输入参数,执行cluster_coefficient算法。 聚类系数算法(cluster_coefficient)用于计算图中节点的聚集程度。 URI POST /ges/v1.0/{project_id}/h
紧密中心度算法(closeness) 功能介绍 根据输入参数,执行紧密中心度算法。 紧密中心度算法(Closeness Centrality)计算一个节点到所有其他可达节点的最短距离的倒数,进行累积后归一化的值。 URI POST /ges/v1.0/{project_id}/h
业务面API构造请求 本节介绍GES业务面REST API请求的组成。 请求URI 图引擎服务业务面API请求URI由如下部分组成。 {URI-scheme} :// {SERVER_URL} / {resource-path} ? {query-string} 尽管请求URI包
Bigclam算法(bigclam) 功能介绍 根据输入参数,执行BigClam算法。 BigClam算法是一种重叠社区发现算法,该算法将节点与社区之间的关系建模为一个二部图,假设图中节点的连边是根据社区关系生成的,其可以检测出图中的重叠社区。 URI POST /ges/v1.
infomap算法(infomap) 功能介绍 根据输入参数,执行infomap算法。 infomap算法是一种基于信息论的社区发现算法,该算法在效率和效果上都表现较好,并且能够发现层次性的社区结构,其优化目标为找到最优的社区结构,使节点的层次编码长度最小。 URI POST /ges/v1