检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Token计算器 功能介绍 为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployment
平台资源管理 管理模型资产、推理资产 获取Token消耗规则
创建AI助手 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > AI助手”,单击页面右上角“创建助手”。参考表1完成AI助手匹配。 表1 创建AI助手参数说明 参数分类 参数名称 参数说明 基本信息 助手名称 设置AI助手的名称。 描述 填写AI助手的描述,如填写功能介绍。
基本概念 账号 用户注册华为云时的账号,账号对其所拥有的资源及云服务具有完全的访问权限,可以重置用户密码、分配用户权限等。由于账号是付费主体,为了确保账号安全,建议您不要直接使用账号进行日常管理工作,而是创建用户并使用他们进行日常管理工作。 用户 由账号在IAM中创建的用户,是云
获取模型调用API地址 登录盘古大模型套件平台。 在左侧导航栏中选择“服务管理”,在相应服务的操作列单击“查看详情”,可在服务列表中申请需要开通的服务。 图1 服务管理 在“概览 > 服务列表”中选择需要调用的模型,并单击操作列的“调用路径”。 图2 服务概览页面 在弹窗中可获取
使用推理SDK 安装SDK 使用SDK前,需要安装“huaweicloud-sdk-core”和“huaweicloud-sdk-pangulargemodels”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在
写作示例 意图匹配 面试问题生成 父主题: 提示词写作实践
发布提示词 通过横向比较提示词效果和批量评估提示词效果,如果找到高质量的提示词,可以将提示词发布至“提示词管理”中。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 提示词工程”,进入提示词工程页面。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程名称,跳转工程任务下候选提示词页面。
撰写提示词 创建提示词工程 撰写提示词 预览提示词效果 父主题: 提示词工程
与其他云服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
如何调用REST API 开通API 构造请求 认证鉴权 返回结果
盘古推理SDK简介 推理SDK概述 盘古大模型推理SDK是对REST API进行的封装,通过该SDK可以处理用户的输入,生成模型的回复,从而实现自然流畅的对话体验。 表1 推理SDK清单 SDK分类 SDK功能 支持语言 使用场景 推理SDK 对话问答(多轮对话)(/chat/completions)
进阶技巧 设置背景及人设 理解底层任务 CoT思维链 考察模型逻辑 父主题: 提示词写作实践
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
调测AI助手 在AI助手的创建页面可以直接进行调测,也可以在AI助手列表页进行调测。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > AI助手”,选择需要调测的AI助手,单击“调测”按钮。 图1 AI助手 在调测页面,可以调整AI助手的指令,输入问题后,单击“运行”获得模型回复结果。
盘古应用开发SDK 盘古应用开发SDK简介 准备工作 Java SDK Python SDK 应用实践
构造请求 本节介绍REST API请求的组成,并以调用IAM服务的获取用户Token接口说明如何调用API,该API获取用户的Token,Token可以用于调用其他API时鉴权。 您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com/videos/102987
典型训练问题和优化策略 什么情况下需要微调 什么情况下不建议微调 数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优
提示工程介绍 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用了
获取提示词模板 平台提供了多种任务场景的提示词模板,可以帮助用户更好地利用大模型的能力,引导模型生成更准确且更具针对性的输出,从而提高模型在特定任务上的性能。在创建提示词工程前,可以先使用预置的提示词模板,或基于提示词模板进行改造,如果提示词模板满足不了使用需求,可再单独创建。 提示词模板可以在平台“应用开发