检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
开发盘古专业大模型 部署专业大模型
130 2024年11月发布的版本,支持4K序列长度推理,支持4个推理单元部署。 Pangu-NLP-BI-32K-20241130 2024年11月发布的版本,支持32K序列长度推理,支持8个推理单元部署。 在选择和使用盘古大模型时,了解不同模型所支持的操作行为至关重要。不同模
开发盘古预测大模型 使用数据工程构建预测大模型数据集 训练预测大模型 部署预测大模型
为什么微调后的盘古大模型只能回答训练样本中的问题 当您将微调的模型部署以后,输入一个已经出现在训练样本中的问题,模型生成的结果很好,一旦输入了一个从未出现过的数据(目标任务相同),回答却完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制
为什么在微调后的盘古大模型中输入训练样本问题,回答完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的
程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。 预测大模型选择建议 选择合适的预测大模型类型有助于提升训练任务的准确程度。您可以根据模型适用场景,选择合适的模型,从而提高模型的整体效果,详见表1。
开发盘古NLP大模型 使用数据工程构建NLP大模型数据集 训练NLP大模型 压缩NLP大模型 部署NLP大模型 评测NLP大模型 调用NLP大模型
布的模型,所有这些模型将存放于空间资产中进行统一管理。用户可查看预置模型的历史版本和操作记录,还可以执行模型的进一步操作,包括训练、压缩、部署等。此外,平台支持导出和导入盘古大模型的功能,使用户能够将其他局点的盘古大模型迁移到本局点,便于模型资源共享。 父主题: 管理盘古大模型空间资产
通用质量评估 针对文本进行通用质量的评估,例如流畅度、清晰度、丰富度等。 说明: 使用该清洗算子前,请确保有已部署的NLP大模型,具体步骤详见创建NLP大模型部署任务。 父主题: 数据集清洗算子介绍
数据、训练模型,依赖专家经验进行算法参数调优,最后才能上线应用。基于ModelArts Studio平台开发工作流,将数据标注、模型训练、部署上线等繁杂的流程固化为一个流水线的步骤。通过大模型的能力,即使只有少量样本,也可以达到良好的模型泛化性和鲁棒性,解决碎片化AI需求的问题。