检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建导入任务 功能介绍 创建数据集的导入任务:从存储系统导入样本、标签到数据集。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{project_
UnrecognizedFlagError:Unknown command line flag 'task_index' 原因分析 运行参数中未定义该参数。 在训练环境中,系统可能会传入在Python脚本里没有定义的其他参数名称,导致参数无法解析,日志报错。 处理方法 参数定义中增加该参数的定义,代码示例如下: parser
ModelArts Notebook的详细资料请查看Notebook使用场景介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界
ModelArts Notebook的详细资料请查看Notebook使用场景介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界
ModelArts的Notebook是否支持Keras引擎? 开发环境中的Notebook支持。训练作业和模型部署(即推理)暂时不支持。 Keras是一个用Python编写的高级神经网络API,它能够以TensorFlow、CNTK或者Theano作为后端运行。Notebook开发环境支持“tf
"create_time" : 1606373999627, "result" : "xxx", "version_id" : "XwTuRqI9En7xuZskW70", "is_current" : true } 状态码 状态码 描述 200 OK 401 Unauthorized
read_hdf_origin(local_file, key, mode, **kwargs) mox.file.remove(local_file) return result setattr(NDFrame, 'to_hdf', to_hdf_override) setattr(pytables
创建工作空间 功能介绍 创建工作空间("default"为系统预留的默认工作空间名称,不能使用)。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v1/
ignore 系统已自动过跳过这张图片,不需要用户处理。 2 tf-decode failed 图片无法被TensorFlow解码且不能修复 ignore 系统已跳过这张图片,不需要用户处理。 3 size over 图片大于5MB resize to small 系统已将图片压缩到5MB以内处理,不需要用户处理。
Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。本案例中使用ModelArts的开发环境Notebook部署推理服务进行调试,请按照以下步骤完成Notebook的创建。 登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界
Code。VS Code安装请参考安装VS Code软件。 图4 下载并安装VS Code 如果用户之前未安装过ModelArts VS Code插件,此时会弹出安装提示,请单击“Install and Open”进行安装;如果之前已经安装过插件,则不会有该提示,请跳过此步骤,直接执行5。 图5
Gallery、发布数据集到AI Gallery。对于支持部署为AI应用的AI Gallery模型,可将此模型部署为AI应用,具体可参见将AI Gallery中的模型部署为AI应用。 发布后的资产,可通过微调大师训练模型和在线推理服务部署模型,具体可参见使用AI Gallery微调大师训练模型、使用AI
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.905) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 父主题: LLM大语言模型训练推理
训练作业导入模块时日志出现前两条报错信息,可能原因如下: 代码如果在本地运行,需要将“project_dir”加入到PYTHONPATH或者将整个“project_dir”安装到“site-package”中才能运行。但是在ModelArts可以将“project_dir”加入到“sys.path”中解决该问题。
观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据Dump分析。本实验可在train
在Notebook实例中运行训练代码,如果数据量太大或者训练层数太多,亦或者其他原因,导致出现“内存不够”问题,最终导致该容器实例崩溃。 出现此问题后,系统将自动重启Notebook,来修复实例崩溃的问题。此时只是解决了崩溃问题,如果重新运行训练代码仍将失败。 如果您需要解决“内存不够”的问题
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh