检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
--trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型。仅支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。如果不指定,则根据输入数据自动匹配数据类型。 --distributed-executor-backend
训练专属预置镜像列表 ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表
Error tokenizing data. C error: Expected .* fields” 问题现象 使用pandas读取csv数据表时,日志报出如下错误导致训练作业失败: pandas.errors.ParserError: Error tokenizing data
ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox # OBS存放数据路径 obs_data_dir= "obs://<bucket_name>/data" # NoteBook存放数据路径 local_data_dir=
ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox # OBS存放数据路径 obs_data_dir= "obs://<bucket_name>/data" # NoteBook存放数据路径 local_data_dir=
本案例介绍如何从0到1制作Ascend容器镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MindSpore,训练使用的资源是专属资源池的Ascend芯片。 场景描述 目标:构建安装如下软件的容器镜像,并在ModelArts平台上使用Ascend规格资源运行训练作业。 ubuntu-18
accelerate optimum transformers 设置GPTQConfig的参数,并且创建一个数据集用于校准量化的权重,以及一个tokenizer用于准备数据集。 from transformers import AutoModelForCausalLM, AutoTokenizer
accelerate optimum transformers 设置GPTQConfig的参数,并且创建一个数据集用于校准量化的权重,以及一个tokenizer用于准备数据集。 from transformers import AutoModelForCausalLM, AutoTokenizer
accelerate optimum transformers 设置GPTQConfig的参数,并且创建一个数据集用于校准量化的权重,以及一个tokenizer用于准备数据集。 from transformers import AutoModelForCausalLM, AutoTokenizer
代码上传至OBS 代码包解压后,在OBS中创建mllm_train目录,并将train/<commit_id>上传至该目录中。 结合准备数据、准备权重、准备代码,将数据集、原始权重、代码文件都上传至OBS后,OBS桶的目录结构如下。 obs://standard-qwenvl-7b ├── training_data
|── data # 预处理后数据 |── pretrain # 预训练加载的数据 |── finetune # 微调加载的数据 |──converted_weights #
几分钟之内快速获得基于云服务平台的弹性云服务器设施,并且这些基础设施是弹性的,可以根据需求伸缩。 购买的ECS服务可以用于挂载SFS Turbo存储。 说明: 购买时需注意,ECS需要和SFS买到同一个VPC才能挂载SFS存储。 自定义购买ECS 数据加密服务DEW 在使用Not
Turbo内的目录与OBS对象存储桶进行关联,然后通过创建导入导出任务实现数据同步。通过OBS与SFS Turbo存储联动,可以将最新的训练数据导入到SFS Turbo,然后在训练作业中挂载SFS Turbo到容器对应ckpt目录,实现分布式读取训练数据文件。 创建SFS Turbo文件系统前提条件: 创建SFS
Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。创建目录“training_data”,将原始数据存放在/m
SFT全参微调训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 在Notebook中修改训练超参配置 以llama2-13b SFT微调为例,执行脚本 0_pl_sft_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所
--workers 8 若发生如下“np.float”报错,按照报错提示修改为“float”即可。 图1 预处理数据报错 数据预处理完成标识。 图2 数据预处理完成 新建data目录并移动处理好的数据。 mkdir data mv meg-gpt2* ./data mv gpt2* ./data
ipynb文件,并编辑以下代码可实现Notebook环境中的数据与OBS中的数据进行相互传递。 import moxing as mox # OBS存放数据路径 obs_data_dir= "obs://<bucket_name>/data" # NoteBook存放数据路径 local_data_dir=
--trust-remote-code:是否相信远程代码。 --dtype:模型推理的数据类型。仅支持FP16和BF16数据类型推理。float16表示FP16,bfloat16表示BF16。如果不指定,则根据输入数据自动匹配数据类型。 --distributed-executor-backend
步骤一 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 步骤二 修改训练Yaml配置文件
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.912)