检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过API接口查询模型详情,model_name返回值出现乱码 问题现象 通过API接口查询模型详情,model_name返回值出现乱码。例如model_name为query_vec_recall_model,但是api接口返回结果是query_vec_recall_model_b。
创建模型失败,提示模型镜像构建任务超时,没有构建日志 问题现象 创建模型失败,构建日志提示超时“Model image build task timed out”,没有详细构建日志。 图1 模型镜像构建任务超时 原因分析 imagePacker构建镜像有超时时间限制,默认值为30
资源池推理服务一直初始化中如何解决 问题现象 创建资源池时作业类型选择了推理服务,资源池创建成功后推理一直显示“环境初始化。 原因分析 专属池网段和推理微服务dispatcher网段冲突,导致专属池上的VPCEP终端节点无法创建,该region无法使用此网段创建包含推理服务的资源池。
查询可视化作业列表 功能介绍 根据指定条件查询用户创建的可视化作业列表。 URI GET /v1/{project_id}/visualization-jobs 参数说明如表1所示。 表1 参数说明 参数 是否必选 参数类型 说明 project_id 是 String 用户项目
监控Lite Server资源 使用CES监控Lite Server资源 使用DCGM监控Lite Server资源 父主题: Lite Server资源管理
释放Lite Server资源 针对不再使用的Lite Server资源,可以删除/退订以释放资源。停止计费相关介绍请见停止计费。 删除“按需计费”的Lite Server资源 登录ModelArts管理控制台。 在左侧导航栏中,选择“AI专属资源池 > 弹性节点 Server”,进入“节点
给子账号配置部署上线基本使用权限 场景描述 本文介绍部署上线场景下子账号所需的基本使用权限,您可参考权限清单新增对应业务场景的权限。示例场景为授权子账号权限,使其能够在开发环境Notebook中使用基础镜像构建一个新的推理镜像,并完成模型的创建,部署为在线服务。 权限清单 权限 表1
主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.911) 场景介绍 准备工作 在Notebook调试环境中部署推理服务 在推理生产环境中部署推理服务 推理精度测试 推理性能测试 推理模型量化 Eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明
基于LLM模型的GPU训练业务迁移至昇腾指导 场景介绍 环境准备 迁移适配 精度对齐 性能调优 常见问题 父主题: GPU业务迁移至昇腾训练推理
模型适配 基于MindSpore Lite的模型转换 动态shape 父主题: GPU推理业务迁移至昇腾的通用指导
主流开源大模型基于Standard适配PyTorch NPU训练指导(6.3.906) 场景介绍 准备工作 预训练 SFT全参微调训练 LoRA微调训练 开启训练故障自动重启功能 查看日志和性能 训练脚本说明 父主题: LLM大语言模型训练推理
配置Lite Cluster网络 本章节介绍如何申请弹性公网IP并绑定到弹性云服务器。通过本文档,您可以实现弹性云服务器访问公网的目的。 使用华为云账号登录CCE管理控制台。 找到购买Cluster资源时选择的CCE集群,单击名称进入CCE集群详情页面,单击“节点管理”页签,在“
释放Lite Cluster资源 针对不再使用的Lite Cluster资源,可以释放资源,停止计费相关介绍请见停止计费。 Lite Cluster资源池资源释放后不可恢复,请谨慎操作。 退订包年/包月的Lite Cluster资源 登录ModelArts管理控制台,在左侧菜单栏中选择“AI专属资源池
制作自定义镜像用于训练模型 训练作业的自定义镜像制作流程 使用预置镜像制作自定义镜像用于训练模型 已有镜像迁移至ModelArts用于训练模型 从0制作自定义镜像用于创建训练作业(Pytorch+Ascend) 从0制作自定义镜像用于创建训练作业(PyTorch+CPU/GPU)
是一种应用性能调优手段,在大部分场景下可以提升应用性能。但是清除缓存也可能会导致容器启动失败或系统性能暂时下降(因为系统需要重新从磁盘加载数据到内存中)。关闭表示不启用缓存清理功能。 大页内存:开启表示配置使用透明大页功能。大页内存是一种内存管理机制,可以通过增大内存页的大小来提
例请参见train_params.json示例。 “dataset_readme.md” 必选文件,数据集要求说明,定义了模型训练时对数据集的要求,会显示在微调工作流的“准备数据”页面。 “requirements.txt” 非必选文件,环境配置文件,定义了项目依赖的python包。AI
default="True", description="是否进行数据清洗, 数据格式异常会导致训练失败,建议开启,保证训练稳定性。数据量过大时,数据清洗可能耗时较久,可自行线下清洗(支持BMP.JPEG,PNG格式, RGB三通道)。建议用JPEG格式数据")), wf.Al
动态benchmark 获取测试数据集。 动态benchmark需要使用数据集进行测试,可以使用公开数据集,例如Alpaca、ShareGPT。也可以根据业务实际情况,使用generate_datasets.py脚本生成和业务数据分布接近的数据集。 公开数据集下载地址: ShareGPT:
regpt数据集进行测试;human-eval数据集表示使用human-eval数据集进行测试。注意:当输入为sharegpt或human-eval时,测试数据的输入长度为数据集的真实长度,--prompt-tokens的值会被忽略。 --dataset-path:数据集的路径,
预训练 前提条件 已上传训练代码、训练权重文件和数据集到SFS Turbo中。 Step1 修改训练超参配置 以llama2-13b预训练为例,执行脚本0_pl_pretrain_13b.sh。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。