检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以llama2
准备AscendFactory训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 执行训练任务(预训练/微调) 执行训练任务(推荐) 介绍如何进行训练,包括训练数据处理、超参配置、训练任务、性能查看。
准备训练Llama2-13B模型适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 训练基础镜像 swr.cn-southwest-2
在创建OBS桶创建的桶下创建文件夹用以存放权重和词表文件,例如在桶standard-llama2-13b中创建文件夹llama2-13B-chat-hf。 参考文档利用OBS-Browser-Plus工具将步骤1下载的权重文件上传至步骤2创建的文件夹目录下。得到OBS下数据集结构,此处以llama2
ModelArts服务提供包年/包月和按需计费两种计费模式,以满足不同场景下的用户需求。如您需要快速了解ModelArts服务不同计费模式的具体价格,请参见ModelArts价格详情。 包年/包月:一种预付费模式,即先付费再使用,按照订单的购买周期进行结算。购买周期越长,享受的折扣越大。一般适用于计算资源需求量长期稳定的成熟业务。
准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 预训练 预训练 介绍如何进行预训练,包括训练数据处理、超参配置、训练任务、性能查看。 微调训练 SFT全参微调
新的训练方式将统一管理训练日志、训练结果和训练配置,使用yaml配置文件方便用户根据自己实际需求进行修改。推荐用户使用该方式进行训练。 步骤一:上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件
【下线公告】华为云ModelArts MindStudio/ML Studio/ModelBox镜像下线公告 华为云ModelArts服务MindStudio,ML Studio,ModelBox镜像将在2024年6月30日00:00(北京时间)正式退市。 下线范围 下线Region:华为云全部Region
AI Gallery(新版) AI Gallery使用流程 发布和管理AI Gallery模型 发布和管理AI Gallery数据集 发布和管理AI Gallery项目 发布和管理AI Gallery镜像 发布和管理AI Gallery中的AI应用 使用AI Gallery微调大师训练模型
代之的是会识别出语句的结构,并在编译时期将数值计算出来而不是运行时去计算(在本例子,结果为2,048,000)。 i = 320 * 200 * 32; AI编译器中,常量折叠是将计算图中预先可以确定输出值的节点替换成常量,并对计算图进行一些结构简化的操作,例如ADDN操作,以及在推理过程中的batch
在ModelArts中如何将Notebook A的数据复制到Notebook B中? 目前不支持直接将Notebook A的数据复制到Notebook B,如果需要复制数据,可参考如下步骤操作: 将Notebook A的数据上传至OBS; 下载OBS中的数据至Notebook B。 文件的上传
本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch
PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。 Ascend PyTorch
实例时存储到云硬盘中的数据和其他存储到对象存储服务中的数据,以免继续扣费。 您可以在“费用中心 > 总览”页面设置“可用额度预警”功能,当可用额度、通用代金券和现金券的总额度低于预警阈值时,系统自动发送短信和邮件提醒。 当产生欠费后,请您及时充值使可用额度大于0。
Server运行的,需要购买并开通Server资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强
本教程案例是基于ModelArts Standard运行的,需要购买并开通ModelArts专属资源池和OBS桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。
Server运行的,需要购买并开通Server资源。 准备代码 准备AscendFactory训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强
Server运行的,需要购买并开通Server资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备镜像 准备训练模型适用的容器镜像。 训练 启动训练 介绍各个训练阶段:指令微调、PPO强