检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图解图计算技术
逻辑上再将计算、网络、存储等资源划分成多个集群。一个Region中的多个AZ间通过高速光纤相连,以满足用户跨AZ构建高可用性系统的需求。 图1阐明了区域和可用区之间的关系。 图1 区域和可用区 目前,华为云已在全球多个地域开放云服务,您可以根据需求选择适合自己的区域和可用区。 如何选择区域?
功能介绍 GES数据迁移功能提供了一键式从常见的关系型数据库(MySQL、Oracle、神通MPP)以及大数据组件(DWS、Hive)将数据导入到图实例的能力。用户只需要将原始数据预处理成GES所需要的点边表,就可以通过界面化操作将这些点边表导入到图实例,省去了之前繁琐的生成元数
Correlation)计算所有边上起点和终点度数之间的Pearson关联系数,常用来表示图中高度数节点是否和高度数节点相连。 适用场景 度数关联度算法(Degree Correlation)适用于衡量图的结构特性场景。 参数说明 无。 示例 单击运行,计算图的度数关联度,JSON结果会展示在查询结果区。
GES支持绑定公网IP,所需费用按照虚拟私有云(VPC)服务的EIP计费规则进行计费;GES在华为云内部网络产生的流量不计费。 图引擎服务计费详情及样例,请参见产品价格详情。您可以通过图引擎服务提供的价格计算器,选择您需要的图规格,快速计算出创建图的参考价格。
图操作接口旨在为用户提供从输入、计算到输出的端到端全流程操作接口。 图属性值类型 Python DSL当前支持3种数据类型:int、float和bool,分别对应C++中的int64_t、double和bool基本数据类型。 Combiner类型 Combiner用于在满足交换律和结合律的计算过程中对数
connected component)。 说明: 本算法计算得到的是弱连通分量。 度数关联度(Degree Correlation) 度数关联度算法计算所有边上起点和终点度数之间的Pearson关联系数,常用来表征图中高度数节点是否和高度数节点相连。 三角计数(Triangle Count)
GES支持绑定公网IP,所需费用按照虚拟私有云(VPC)服务的EIP计费规则进行计费;GES在华为云内部网络产生的流量不计费。 图引擎服务计费详情及样例,请参见产品价格详情。您可以通过图引擎服务提供的价格计算器,选择您需要的图规格,快速计算出创建图的参考价格。 计费模式 当前提供两种计费模式供您选择:按需计费和预付费
//带有globalAcc一起计算的表达式, 属于globalacc expression 1+v.score*2 //带有vertexAcc一起计算的表达式, 属于vertexacc expression 表达式升格表 不同类型的表达式在赋值和计算上,存在不同的限制。即,不同类型互相之间的赋值和计算是否合法的限制。
来递归计算各节点的重要性。与PageRank算法不同的是,为了保证随机行走中各节点的访问概率能够反映出用户的偏好,PersonalRank算法在随机行走中的每次跳转会以(1-alpha)的概率返回到source节点,因此可以基于source节点个性化地计算网络节点的相关性和重要性
导致欠费后,账号将变成欠费状态,资源将陆续进入宽限期和保留期。 图3 按需计费资源生命周期 欠费预警 系统会在每个计费周期后的一段时间对按需计费资源进行扣费。当您的账户被扣为负值时,我们将通过邮件、短信和站内信的方式通知到华为云账号的创建者。 欠费后影响 当您的账号因按需GES资
其值为空时,将不考虑点的类型,输出算法原始计算结果。 对其赋值时,将从计算结果中过滤出具有该“label”的点的返回。 String 节点label - directed 否 是否考虑边的方向。 Boolean true 或false true alpha决定跳转概率系数,也称为阻尼系数,是算法内的计算控制变量。
商交易网络中的用户和商品、互联网中的网页等。 边 图数据模型中的边代表关系。如社交网络中的好友关系、电商交易网络中用户评分和购买行为、论文中作者之间的合作关系、文章之间的索引关系等。 Gremlin Gremlin是Apache TinkerPop开源的图计算框架中的图遍历语言。
eakly connected component)。连通分量算法(Connected Component)计算得到的是弱连通分量。 参数说明 无。 示例 单击运行,计算各个节点所属的连通分量,JSON结果会展示在查询结果区。 父主题: 算法参考
k核算法(k-core) 概述 k核算法(k-core)是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 适用场景 k核算法(k-core)适用于社区发现、金融风控等场景。 参数说明 表1 k核算法(k-core)参数说明
k核算法(kcore) 功能介绍 根据输入参数,执行K核算法。 K核算法是图算法中的一个经典算法,用以计算每个节点的核数。其计算结果是判断节点重要性最常用的参考值之一,较好的体现了节点的传播能力。 URI POST /ges/v1.0/{project_id}/hyg/{graph_name}/algorithm
使用HyG算法分析图 GES服务为您提供了丰富的基础图算法、图分析算法和图指标算法,您可以使用图算法做关系分析等。 前提条件 前端创建持久化版图时,选择开启HyG计算引擎。 图1 HyG计算引擎 操作步骤 创建HyG图。 发送“POST /ges/v1.0/{project_id
关联预测算法(Link Prediction) 概述 关联预测算法(Link Prediction)给定两个节点,根据Jaccard度量方法计算两个节点的相似程度,预测节点之间的紧密关系。 适用场景 关联预测算法(Link Prediction)适用于社交网上的好友推荐、关系预测等场景。
选择想要创建的模板:当前支持“资产管理图模板”和“供电管理图模板”。 图3 模板选择 设置图相关信息: 虚拟私有云:若您的账号下有vpc,会自动选择一个填充,您可以自行修改;若无vpc,则需要创建一个新的vpc,创建成功后,可自动填充。 子网:可进入VPC服务查看VPC下已创建的子网名称和ID,选择需要创建集群的子网。
单源最短路算法(SSSP) 概述 单源最短路算法(SSSP)计算了图论中的一个经典问题,给出从给定的一个节点(称为源节点)出发到其余各节点的最短路径长度。 适用场景 单源最短路算法(SSSP)适用于网络路由、路径设计等场景。 参数说明 表1 单源最短路算法(SSSP)参数说明 参数