检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建推理作业 功能介绍 支持调用科学计算大模型创建海洋类模型的推理作业。 URI 获取URI方式请参见请求URI。 请求参数 使用Token认证方式的请求Header参数见表1。 表1 请求Header参数(Token认证) 参数 是否必选 参数类型 描述 X-Auth-Token
可选择的要素参考表8中,提供的高空变量和表面变量。 num_ensembles 否 Long 集合数量。在气象预报中,集合预报是指对初始场加入一定程序的扰动,使其生成一组由不同初始场预报的天气预报结果,从而提供对未来天气状态的概率信息。这种方法可以更好地表达预报的不确定性,从而提高预报的准确性和可靠性。 取值范围:[2
海洋模型 创建推理作业 查询推理作业详情 父主题: 科学计算大模型
盘古科学计算大模型调优实践 模型调优方法介绍 数据预处理优化 训练参数优化 评估模型效果 调优典型问题 父主题: 模型调优实践
微调场景介绍 盘古科学计算大模型的区域海洋要素模型,可以对未来一段时间海洋要素进行预测。可为海上防灾减灾,指导合理开发和保护渔业等方面有着重要作用。 目前,区域海洋要素模型支持微调、预训练两种操作: 预训练:可以在重新指定深海变量、海表变量、以及深海层深、时间分辨率、水平分辨率以
气象/降水模型 创建推理作业 查询推理作业详情 父主题: 科学计算大模型
模型调优方法介绍 调优目标:提升模型精度和性能。 调优思路:模型调优总体可分为两方面,数据预处理和模型训练参数优化,优化思路是从最简单的情形出发,逐步迭代调整提升模型效果,通过实验发现和确认合适的数据量,以及最佳的模型结构和模型参数。 父主题: 盘古科学计算大模型调优实践
查询推理作业详情 功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作
训练参数优化 科学计算大模型的训练参数调优可以考虑学习率参数,学习率(Learning Rate)是模型训练中最重要的超参数之一,它直接影响模型的收敛速度和最终性能: 学习率过高,会导致损失在训练初期快速下降,但随后波动较大,甚至出现NaN(梯度爆炸)的问题。 学习率过低,会导致
调优典型问题 科学计算大模型调优典型问题见表1。 表1 科学计算大模型调优典型问题 问题 可能原因 解决方法 预训练或微调作业失败,提示训练集数据不足。 训练集选取时间区段是否不足。 训练集选择的时间区段需要至少超过模型分辨率对应时长。 预训练或微调作业失败,提示验证集数据不足。
查询推理作业详情 功能介绍 根据创建推理作业的作业ID获取科学计算大模型的结果数据。 URI 获取URI方式请参见请求URI。 GET /tasks/{task_id} 调用查询推理作业详情API所需要的域名与创建推理作业API一致,可以参考创建推理作业获取。获取完整的创建推理作
模型对异常值过度敏感,导致拟合异常值而非整体数据分布。 训练过程中损失波动较大,甚至出现梯度爆炸。 模型在测试集上表现不佳,泛化能力差。 优化调整策略如下: 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。 通过可视化方法,数据可视化或者使用箱线图进行异常值的排查。 结合数据自身特征,进行异常数据的筛选。
盘古科学计算大模型微调训练实践 微调场景介绍 构建微调训练任务数据集 构建微调训练任务 构建部署任务 微调典型问题 父主题: 模型训练实践
部署配置 模型来源 选择“盘古大模型” 模型类型 选择“科学计算大模型”。 场景 本案例中选择“区域中期海洋智能预测”。 部署模型 从资产中选择需要部署的模型。 部署区域中期海洋智能预测服务需要同时选择“区域中期海洋智能预测”和“全球中期海洋智能预测”两个模型。 部署方式 选择“云上部署”。
微调典型问题 科学计算大模型微调典型问题见表1。 表1 科学计算大模型微调典型问题 问题 可能原因 解决方法 预训练或微调作业失败,提示训练集数据不足。 训练集选取时间区段是否不足。 训练集选择的时间区段需要至少超过模型分辨率对应时长。 预训练或微调作业失败,提示验证集数据不足。
指标说明见表2。 表2 模型效果评估指标说明 指标名称 说明 Loss 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。这里代表深海Loss和海表Loss的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。
训练结果页面 表1 模型效果评估指标说明 评估指标 指标说明 Loss 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。这里代表高空Loss(深海Loss)和表面Loss(海表Loss)的综合Loss。 一般来说,一个正常的Loss曲线应该是单调递减的,即
训练资源、推理资源,支持模型资产的包年/包月订购、资源的包年/包月和按需计费订购。 模型资产:模型资产可用于模型开发、应用开发等模块。当前支持订购NLP大模型、多模态大模型、CV大模型、预测大模型、科学计算大模型和专业大模型。 数据资源:数据通算单元适用于数据加工,用于正则类算子
如何对盘古大模型的安全性展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、
置的Python解释器预置插件。 “Python解释器插件”能够执行用户输入的Python代码,并获取结果。此插件为应用提供了强大的计算、数据处理和分析功能,用户只需将其添加到应用中,即可扩展功能。 准备工作 请确保您有预置的NLP大模型,并已完成模型的部署操作,详见《用户指南》“开发盘古NLP大模型