检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
像头录制的图像数据、雷达的点云数据、车辆行驶轨迹等。生成的图片可以直接用于标注。 标注数据 对于图片和点云数据,可以通过自动或人工的方式,标注图像中特定物体。标注后的图片和点云图片可用于模型训练,高质量的标注数据有利于模型精准度提升,并持续迭代。 增量数据集 将标注后的数据根据数
别率。 支持模型管理与评测,提高模型的准确性,持续提升自动驾驶安全系数。 仿真服务 以测试为核心。 提供车辆动力学仿真、自动驾驶算法仿真、传感器仿真、交通流仿真等功能,实现对自动驾驶算法的大规模仿真测试,持续提升自动驾驶算法的安全性。 在数据服务和训练服务的基础上,提供在线仿真管
拉丁超立方采样的目的是用较少的采样次数,来达到与多次蒙特卡洛采样相同的结果,并且涵盖更全面的边界点。 如下图所示,同样对于µ=0,δ=1的正态分布,可以利用更少的采样点得到相同的分布,并且不会产生明显的聚集现象,边界值也能更容易获取到。 图2 拉丁超立方采样 联合概率分布采样 联合概率分布采样假设连续
蒙特卡洛采样 拉丁超立方采样 拉丁超立方采样的目的是用较少的采样次数,来达到与多次蒙特卡洛采样相同的结果,并且涵盖更全面的边界点。 如下图所示,同样对于µ=0,δ=1的正态分布,可以利用更少的采样点得到相同的分布,并且不会产生明显的聚集现象,边界值也能更容易获取到。 图2 拉丁超立方采样 联合概率分布采样
parallel:同步执行下方代码块内的动作action。 serial:依次执行下方代码块内的动作act。 例如下方样例中,do parallel:下的assign_init_speed,assign_init_position和wait elapsed(10s) 是同步执行的。而serial:下的lead_vehicle
仿真任务中一个仿真场景的运行时间或一个场景组中每个场景的运行时间,单位为秒。运行时长选择范围[60,600]。 重复次数 同一个场景在一个任务中多次运行指定次数。重复次数选择范围[1,1000000]。 录制策略 回放场景直观查看主车在仿真场景中的运行情况。目前支持的录制策略:不录制、录制所有场景。
在页面左上方单击“控制台”,进入华为云管理控制台。 在控制台右上角的账户名下方,单击“我的凭证”,进入“我的凭证”页面。 在“我的凭证”页面,选择“访问密钥 > 新增访问密钥”。 填写该密钥的描述说明,单击“确定”。根据提示单击“立即下载”,下载密钥。 密钥文件会直接保存到浏览器默认的下载文件夹中。打开名称为“credentials
以发射激光束探测目标的位置、速度等特征量的雷达系统,探测车辆周围的目标位置,监测移动速度。 位置数据(gnss) gnss_raw .pb 通过卫星导航系统,定位车辆位置。 毫米波雷达(radar) RADAR_FRONT .pcd 工作在毫米波波段探测的雷达,探测车辆周围的目标位置,监测移动速度。
规格需要平台管理员在纳管模型评测用途的任务作业集群后创建。 优先级:设定任务的优先级,数值取[-50,50]的整数,数字越大,优先级越高。 选择模型与数据集 图2 选择模型与数据集 选择模型:选择模型仓库和对应的模型版本,如果需要将模型对应的原始算法也挂载到用户评测容器中,可单击
以发射激光束探测目标的位置、速度等特征量的雷达系统,探测车辆周围的目标位置,监测移动速度。 位置数据(gnss) gnss_raw .pb 通过卫星导航系统,定位车辆位置。 毫米波雷达(radar) RADAR_FRONT .pcd 工作在毫米波段探测的雷达,探测车辆周围的目标位置,监测移动速度。
以发射激光束探测目标的位置、速度等特征量的雷达系统,探测车辆周围的目标位置,监测移动速度。 位置数据(gnss) gnss_raw .pb 通过卫星导航系统,定位车辆位置。 毫米波雷达(radar) RADAR_FRONT .pcd 工作在毫米波段探测的雷达,探测车辆周围的目标位置,监测移动速度。
自车与前车距离等参数,这些参数都有一定的取值范围,根据这些参数可以派生出任意数量的具体场景。 逻辑场景库是不同逻辑场景的数据集合,以树状结构的形式表现出来,便于对逻辑场景进行统一的、有效的组织、管理和应用,比如当用户想系统管理和方便查看超车的逻辑场景,可以将所有超车相关的逻辑场景加入一个场景库中。
Headway)检测 车头时距检测的目的是判断主车行驶过程中与其他交通车的车头时距是否台小。 车头时距是主车与引导车的相对距离除以主车的速度。 即使主车未发生碰撞, 当车头时距过小时(该阈值可用户自定义,本设计默认取2s), 发生碰撞的风险太大, 这样也是不合理的。 车头时距和碰撞时间两者都是描述碰撞风险大小的。
语义分割任务是指根据标注规范将待标注点云图像中出现的天空、道路、车辆等类标注物进行标注。 图1 语义分割点云标注任务 绘制对象 单击大规模3D语义分割任务,单击任意一帧,进入人工标注。 单击左侧标注工具栏,选择对应的标注工具。 选择对应的标注类别。 绘制标注物。 修改标注物。 将其他
立且隔离的可用区,这些可用区通过延迟低、吞吐量高且冗余性高的网络连接在一起。利用可用区,您可以设计和操作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中心基础设施相比,可用区具有更高的可用性、容错性和可扩展性。 Octopus通过对DB的数据进行备
通过3D/2D的融合,可以弥补各自模态的不足,扬长避短,提升目标检测的整体精度。在当前3D检测的基础上,通过2D cross-check提升3D检测类别的精度提升。 前提条件 在服务控制台“总览”>“我的模型”区域,开通“场景识别”服务,具体操作步骤请参考开通我的模型和购买套餐包。
osi.proto中的SimData反序列化仿真pb中的内容。该步骤会得到一个SimData的内存对象,用户通过访问对象中的字段即可获取自己关注的数据。 SimData中包含仿真器输出的整个仿真过程数据,用户处理根据自身评测逻辑处理所有帧数据。 用户自定义的评测指标包含通过,不通过等结果,将该结果写入到eva
当主车和发生碰撞的副车的夹角在或者内,并且副车位于主车后方,则认为发生被追尾碰撞。 当主车与副车的碰撞夹角在内时,则认为发生正面对碰。 当主车与副车的碰撞夹角在或者内时,则认为发生垂直角度碰撞。 当主车与副车的碰撞角度在或或或内时,则认为发生斜角侧碰。 该指标关联的内置可视化时间序列数据为:暂无。
点云抽帧。 点云 点云是一种由激光雷达收集到的数据类型,包含三维坐标、反射强度等信息,用来检测和识别车行道路上的物体。 雷达会在车辆行驶过程中不断收集点云数据来了解周围的环境,并利用点云数据所获得的环境信息帮助车辆定位,提高车辆定位的精度。 接管 接管是从自动驾驶系统转换为驾驶员
后两帧信息进行对比。 同步追踪数据:选中标注物后执行该操作可将当前任务中相同ID的所有标注物的大小类型进行覆盖。 显示轨迹线:选择3D框,开启此功能后可将当前任务中与此标注物ID相同的框进行轨迹线的连接。 添加轨迹点:开启后左键添加轨迹点,右键撤销当页轨迹点,并重新规划轨迹线,此ID最后一帧不可操作。