已找到以下 18 条记录
AI智能搜索
产品选择
推荐系统 RES
没有找到结果,请重新输入
产品选择
推荐系统 RES
在搜索结果页开启AI智能搜索
开启
产品选择
没有找到结果,请重新输入
  • 如何上传实时数据? - 推荐系统 RES

    如何上传实时数据? 推荐系统支持您通过SDK上传实时数据,具体操作方法如下。 前提条件 如果需要使用近线上传实时数据的用户,可以使用DIS SDK接口上传,请您按照需求下载DIS SDK,下载完之后按照下面的说明进行SDK升级。 子账户无法使用SDK上传数据,需要主账号授权子账号DIS

  • 上传实时数据 - 推荐系统 RES

    上传实时数据 RES通过DIS SDK上传实时数据,用户实时日数据并做近线处理。当前仅支持Java语言的SDK,示例请参见《数据接入服务SDK参考》。 前提条件 如果需要使用近线上传实时数据的用户,可以使用DIS SDK接口上传,请您按照需求下载DIS SDK,下载完之后按照下面的说明进行SDK升级。

  • 与其他云服务的关系 - 推荐系统 RES

    与其他云服务的关系 表1 RES与其他服务的关系 相关服务 交互功能 数据湖探索 数据湖探索(Data Lake Insight,简称DLI)用于推荐系统的离线计算和近线计算。DLI的更多信息请参见《数据湖探索文档》。 对象存储服务 对象存储服务(Object Storage S

  • 排序策略-离线排序模型 - 推荐系统 RES

    排序策略-离线排序模型 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。 Logistic Regression (LR) LR算法是一种广义的线性回归分析模型,常用于数据挖掘、疾病自动诊断、经济预测等领域。LR算

  • 什么是推荐系统 - 推荐系统 RES

    什么是推荐系统 推荐系统(Recommender System,简称RES) ,基于华为大数据和人工智能技术,提供推荐平台和算法服务,并帮助企业构建个性化推荐应用,助力提升网站/APP的点击率、留存率和用户体验。 RES优势 开放式推荐 提供完整的推荐平台和原子推荐算法,不绑定客

  • 特征工程 - 推荐系统 RES

    特征工程 特征工程可对推荐系统的离线数据进行处理,它包含两个功能: 从离线数据中提取用户、物品画像和RES内部通用格式数据; 把RES内部通用格式数据处理成训练排序模型所需的训练数据、测试数据等。 与功能对应,特征工程的两个任务分别是: 初始用户画像-物品画像-标准宽表生成 排序样本预处理

  • 创建在线服务 - 推荐系统 RES

    线服务,具体说明如下: 推荐引擎 推荐引擎用于对RES召回策略跑出来的候选集结果进行融合过滤和排序。 文本标签 文本标签服务为用户提供自然语言处理工具,可用于关键词提取和命名实体识别。 排序 排序服务允许用户提供自己的候选集,使用RES的排序策略进行排序。 前提条件 已经有计算成

  • 与其他云服务的关系 - 推荐系统 RES

    与其他云服务的关系 表1 RES与其他服务的关系 相关服务 交互功能 数据湖探索 数据湖探索(Data Lake Insight,简称DLI)用于推荐系统的离线计算和近线计算。DLI的更多信息请参见《数据湖探索文档》。 对象存储服务 对象存储服务(Object Storage S

  • 组合作业 - 推荐系统 RES

    组合作业 创建组合作业 通过创建组合作业,用户可以根据配置的策略规则进行离线计算得到不同策略的候选集ID,来进行在线流程计算,得到用户满意的推荐结果。组合作业具体实现请参见图1。 图1 组合作业 创建组合作业主要包括如下设置: 基本配置 资源选择 召回策略 过滤规则 排序策略 预览配置

  • 排序策略 - 推荐系统 RES

    排序策略 排序策略简介 排序策略用于训练排序模型,该模型将被用于对召回策略召回的候选集进行排序,以将推荐物品顺序调整到最优。排序模型可对LR、FM、FFM、DeepFM和PIN等模型进行训练,具体包括如下内容: 逻辑斯蒂回归-LR 因子分解机-FM 域感知因子分解机-FFM 深度网络因子分解机-DeepFM

  • ModelArts - 推荐系统 RES

    技术、观点、课程专题呈现 Cloud Native Lives Kubernetes系列课程,带你走进云原生技术的核心 GO语言深入之道 介绍几个Go语言及相关开源框架的插件机制 跟唐老师学习云网络 唐老师将自己对网络的理解分享给大家 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦!

  • 数据探索 - 推荐系统 RES

    数据探索 数据探索介绍 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于增量数据会实时入库,因此可以通过定时执行数据探索任务来覆盖增量数据。

  • 构造请求 - 推荐系统 RES

    // {Endpoint} / {resource-path} ? {query-string} 尽管请求URI包含在请求消息头中,但大多数语言或框架都要求您从请求消息中单独传递它,所以在此单独强调。 URI-scheme:表示用于传输请求的协议,当前所有API均采用HTTPS协议。

  • 策略参数说明 - 推荐系统 RES

    策略参数说明 RES支持多种策略,本章介绍召回策略(recall)、排序策略(sorting)。具体描述请参见表1 策略类型说明。 表1 策略类型说明 strategy_type name algorithm_type recall 特定行为热度推荐 SpecificBehavior

  • 数据探索是什么?近线实时数据如何在数据探索中的报告体现? - 推荐系统 RES

    数据探索是什么?近线实时数据如何在数据探索中的报告体现? 数据探索是针对当前数据源的数据进行挖掘和分析,主要聚焦在特征的分布范围、统计以及特征齐全度等,使用户能够更了解数据,进而指导在特征工程以及相关算法的配置。 数据探索是一个离线分析任务,任务有对应的启动时间,由于近线实时数据

  • 产品功能 - 推荐系统 RES

    产品功能 数据源 数据源功能可以在用户上传数据后,将离线数据源经过数据特征抽取,生成推荐系统内部通用的数据格式。经过数据质量检测来确保数据的合法性。提供数据源智能检测,输出数据分布和数据质量信息等,智能完成特征工程。 智能场景 根据业务场景选择对应的智能推荐场景,快速搭建专属推荐

  • 应用场景 - 推荐系统 RES

    应用场景 推荐系统支持深度智能挖掘用户和物品的关联关系,将对应场景的推荐结果推送给用户,代替低纬度的人工规则,提升了相关运营指标和用户的体验。包含了互联网信息流,短视频/直播/音乐/阅读,广电媒资,社交,电商等场景。 RES+电商应用场景 场景描述 电商场景中,通常涉及首页推荐、

  • 近线作业 - 推荐系统 RES

    近线作业 近线作业简介 近线作业为推荐系统提供实时计算能力。近线作业以数据接入服务DIS中的数据为数据源,实时计算并更新用户画像、物品画像和推荐候选集等数据。使用近线作业,用户需先将业务系统埋点日志转换成实时日志指定格式,并实时写入DIS相应通道。近线作业具体实现请参见图1。 图1