检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如何调整训练参数,使盘古大模型效果最优 模型微调参数的选择没有标准答案,不同的场景,有不同的调整策略。一般微调参数的影响会受到以下几个因素的影响: 目标任务的难度:如果目标任务的难度较低,模型能较容易的学习知识,那么少量的训练轮数就能达到较好的效果。反之,若任务较复杂,那么可能就需要更多的训练轮数。
为了帮助用户更好地管理和优化Token消耗,平台提供了Token计算器工具。Token计算器可以帮助用户在模型推理前评估文本的Token数量,提供费用预估,并优化数据预处理策略。 URI POST /v1/{project_id}/deployments/{deployment_id}/caltokens 表1 路径参数
Studio大模型开发平台为用户提供了丰富的训练工具与灵活的配置选项。用户可以根据实际需求选择合适的模型架构,并结合不同的训练数据进行精细化训练。平台支持分布式训练,能够处理大规模数据集,从而帮助用户快速提升模型性能。 模型压缩:在模型部署前,进行模型压缩是提升推理性能的关键步骤。通过压缩模型,能
工算子对原始数据进行清洗、转换、提取和过滤等操作,以确保数据符合模型训练的标准和业务需求。 通过这一过程,用户能够优化数据质量,去除噪声和冗余信息,提升数据的准确性和一致性,为后续的模型训练提供更高质量、更有效的输入。数据加工不仅仅是对数据的简单处理,它还针对不同数据类型和业务场景进行有针对性的优化。
自动检测和过滤。 文本长度过滤 按照设置的文本长度,对长度范围内的数据进行保留。 冗余信息过滤 查找文本中的冗余信息并替换为空值,不改变数据条目。例如目录封面、图注表注、标注说明、首尾部信息、冗余段落和参考文献等非正文内容。 N-gram特征过滤 根据如下特征过滤: N gram
模型压缩任务参数说明 参数类别 参数名称 说明 压缩配置 压缩模型 选择需要进行压缩的模型,可使用来自资产的模型或任务的模型。 压缩策略 例如,可使用INT8压缩策略,同等QPS目标下,INT8可以降低推理显存占用。 基本信息 任务名称 模型压缩任务的名称。 描述 模型压缩任务的描述。 参
位训练失败的原因。典型训练报错和解决方案请参见NLP大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如wor
云服务进行操作。 服务使用OBS存储训练数据和评估数据,如果需要对OBS的访问权限进行细粒度的控制。可以在盘古服务的委托中增加Pangu OBSWriteOnly、Pangu OBSReadOnly策略,控制OBS的读写权限。 表1 策略信息 策略名称 拥有细粒度权限/Action
训练失败的原因。典型训练报错和解决方案请参见科学计算大模型训练常见报错与解决方案。 训练日志可以按照不同的节点(训练阶段)进行筛选查看。分布式训练时,任务被分配到多个工作节点上进行并行处理,每个工作节点负责处理一部分数据或执行特定的计算任务。日志也可以按照不同的工作节点(如wor
Security Administrator 统一身份认证服务(除切换角色外)所有权限。 图3 添加用户组权限 设置最小授权范围。 根据授权项策略,系统会自动推荐授权范围方案。 可以选择“所有资源”,即用户组内的IAM用户可以基于设置的授权项限使用账号中所有的企业项目、区域项目、全局服务资源。
格遵循指令进行回复的,关键信息为指令及说明。 补预设 当任务存在多个情境时,编写提示词时需要考虑全面,需要做好各种情境的预设,告知模型对应策略,可以有效防止模型误回答以及编造输出。 父主题: 提示词写作实践
org/project/rouge-score/)进行问答对的过滤。 下表列举了该场景常见的数据质量问题,以及相对应的清洗策略,供您参考: 表1 微调数据问题与清洗策略 序号 数据问题 清洗步骤与方式 1 问题或回答中带有不需要的特定格式内容或者时间戳等。 通过编写代码、正则表达式等进
为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场
盘古NLP大模型SFT任务创建流程见表1。 表1 盘古NLP大模型SFT任务创建流程 操作步骤 说明 步骤1:导入数据至盘古平台 本样例场景实现将存储在OBS的文本数据导入至盘古平台,并上线为原始数据集。 步骤2:加工文本类数据集 本样例场景帮助用户利用数据集加工算子处理原始数据集。 步骤3:标注文本类数据集
配置服务访问授权 配置OBS访问授权 盘古大模型服务使用对象存储服务(Object Storage Service,简称OBS)进行数据存储,实现安全、高可靠和低成本的存储需求。因此,为了能够顺利进行存储数据、训练模型等操作,需要用户配置访问OBS服务的权限。 登录ModelArts
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类问题
与其他服务的关系 与对象存储服务的关系 盘古大模型使用对象存储服务(Object Storage Service,简称OBS)存储数据和模型,实现安全、高可靠和低成本的存储需求。 与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。
非常慢。当batch_size减小时,学习率也应相应地线性减小。预训练时,默认值为:0.00001,范围为[0, 0.001] 学习率调整策略 用于选择学习率调度器的类型。学习率调度器可以在训练过程中动态地调整学习率,以改善模型的训练效果。目前支持CosineDecayLR调度器。
盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS数据保
训练和评测任务的需求。通过提供自动化的质量检测和数据清洗能力,对原始数据进行优化,确保其质量和一致性。同时,数据工程工具链还提供强大的数据存储和管理能力,为大模型训练提供高质量的数据支撑。 支持区域: 西南-贵阳一 使用数据工程准备与处理数据集 检测数据集质量 清洗数据集 发布数据集