检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
分布式模型训练 分布式训练功能介绍 创建单机多卡的分布式训练(DataParallel) 创建多机多卡的分布式训练(DistributedDataParallel) 示例:创建DDP分布式训练(PyTorch+GPU) 示例:创建DDP分布式训练(PyTorch+NPU) 父主题:
相关章节 创建单机多卡的分布式训练(DataParallel):介绍单机多卡数据并行分布式训练原理和代码改造点。 创建多机多卡的分布式训练(DistributedDataParallel):介绍多机多卡数据并行分布式训练原理和代码改造点。 示例:创建DDP分布式训练(PyTorch+
相应目录没有生成大小>0的日志文件,则对应的父级目录也不会上传。因此,PyTorch NPU的plog日志是按worker存储的,而不是按rank id存储的(这是区别于MindSpore的)。目前,PyTorch NPU并不依赖rank table file。 #!/bin/bash
分布式Tensorflow无法使用“tf.variable” 问题现象 多机或多卡使用“tf.variable”会造成以下错误: WARNING:tensorflow:Gradient is None for variable:v0/tower_0/UNET_v7/sub_pixel/Variable:0
创建单机多卡的分布式训练(DataParallel) 本章节介绍基于PyTorch引擎的单机多卡数据并行训练。 MindSpore引擎的分布式训练参见MindSpore官网。 训练流程简述 单机多卡数据并行训练流程介绍如下: 将模型复制到多个GPU上 将一个Batch的数据均分到每一个GPU上
示例:创建DDP分布式训练(PyTorch+GPU) 本文介绍三种使用训练作业来启动PyTorch DDP训练的方法及对应代码示例。 使用PyTorch预置框架功能,通过mp.spawn命令启动 使用自定义镜像功能 通过torch.distributed.launch命令启动 通过torch
任务,给出了单机训练和分布式训练改造(DDP)的代码。直接执行代码为多节点分布式训练且支持CPU分布式和GPU分布式,将代码中的分布式改造点注释掉后即可进行单节点单卡训练。 训练代码中包含三部分入参,分别为训练基础参数、分布式参数和数据相关参数。其中分布式参数由平台自动入参,无需
用户被授予的策略中必须包含允许“modelarts:notebook:create”的授权项,该接口才能调用成功。 支持的授权项 策略包含系统策略和自定义策略,如果系统策略不满足授权要求,管理员可以创建自定义策略,并通过给用户组授予自定义策略来进行精细的访问控制。策略支持的操作与API相对应,授权项列表说明如下:
train_instance_count:必选参数,训练使用的worker个数,分布式调测时为2,训练开始时SDK还会再创建一个Notebook,与当前的Notebook组成一个2节点的分布式调试环境。 script_interpreter:可选参数,指定使用哪个python
在ModelArts创建分布式训练时如何设置NCCL环境变量? ModelArts训练平台预置了部分NCCL环境变量,如表1所示。这些环境变量建议保持默认值。 表1 预置的环境变量 环境变量 说明 NCCL_SOCKET_IFNAME 指定通信的网卡名称。 NCCL_IB_GID_INDEX
如何在ModelArts上获得RANK_TABLE_FILE进行分布式训练? ModelArts会帮用户生成RANK_TABLE_FILE文件,可通过环境变量查看文件位置。 在Notebook中打开terminal,可以运行如下命令查看RANK_TABLE_FILE: 1 env
在Lite Cluster资源池上使用ranktable路由规划完成Pytorch NPU分布式训练 场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度。
权限策略和授权项 策略及授权项说明 数据管理权限 开发环境权限 训练作业权限 模型管理权限 服务管理权限 工作空间管理权限 DevServer权限
modelarts:image:create - √ √ 获取开发环境挂载的存储列表 GET /v1/{project_id}/notebooks/{id}/storage modelarts:notebook:listMountedStorages - √ √ 挂载开发环境存储 POST /v1/{project_
在Lite Cluster资源池上使用Snt9B完成分布式训练任务 场景描述 本案例介绍如何在Snt9B上进行分布式训练任务,其中Cluster资源池已经默认安装volcano调度器,训练任务默认使用volcano job形式下发lite池集群。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。
/v2/{project_id}/algorithms/{algorithm_id} modelarts:aiAlgorithm:get - √ √ 父主题: 权限策略和授权项
/v1/{project_id}/dev-servers/sync modelarts:devserver:sync - √ × 父主题: 权限策略和授权项
GET /v1/{project_id}/models/{model_id} modelarts:model:get - √ √ 父主题: 权限策略和授权项
/v1/{project_id}/services/{service_id}/events modelarts:service:getEvents - √ √ 父主题: 权限策略和授权项
/{workspace_id}/quotas modelarts:workspace:updateQuotas - √ √ 父主题: 权限策略和授权项