检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
表的创建与查询操作指导。 HBase集群使用Hadoop和HBase组件提供一个稳定可靠、性能优异、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭建起TB至PB级数据规模的存储系统,对数据轻松进行过滤分析,毫秒级得到响应,快速发现数据价值。
Flume基本原理 Flume是一个高可用、高可靠,分布式的海量日志采集、聚合和传输的系统。Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接收方(可定制)的能力。其中Flume-NG是Flume的一个分支,其特点
ALM-45429 ClickHouse扩容节点上同步表元数据失败 本章节仅适用于MRS 3.1.2及之后版本。 告警解释 ClickHouse扩容时创建分布式表对应的本地表失败时产生该告警。 告警属性 告警ID 告警级别 是否自动清除 45429 重要 否 告警参数 参数名称 参数含义 来源 产生告警的集群名称。
并发使用同一个客户端会对该客户端连接的IoTDBServer造成压力,可以根据业务需求连接多个不同的客户端来达到负载均衡。 使用SessionPool复用连接 分布式在Session内部做了缓存,实现客户端时避免每次读写都新建Session,或者使用SessionPool进行复用连接。
节点。 方案架构 租户是MRS大数据平台的核心概念,使传统的以用户为核心的大数据平台向以多租户为核心的大数据平台转变,更好的适应现代企业多租户应用环境,如图1所示。 图1 以用户为核心的平台和以多租户为核心的平台 对于以用户为核心的大数据平台,用户直接访问并使用全部的资源和服务。
如图2所示。 ConfigNode:管理角色,负责DataNode数据分片,负载均衡等。 IoTDBServer(DataNode):存储角色,负责数据存储、查询和写入等功能。 图2 IoTDB分布式架构 IoTDB原理 根据属性层级、属性涵盖范围以及数据之间的从属关系,可将I
过200。 部署负载均衡组件,查询基于负载均衡组件进行,避免单点查询压力太大影响性能。 ClickHouse支持连接集群中的任意节点查询,如果查询集中到一台节点,可能会导致该节点的压力过大并且可靠性不高。建议使用ClickHouseBalancer或者其他负载均衡服务,均衡查询负载,提升可靠性。
员获取日志进行分析。 MRS具有开放的生态,支持无缝对接周边服务,快速构建统一大数据平台。 以全栈大数据MRS服务为基础,企业可以一键式构筑数据接入、数据存储、数据分析和价值挖掘的统一大数据平台,并且与数据治理中心DataArts Studio及数据可视化等服务对接,为客户轻松解
本章节以HBase查询集群为例介绍如何快速购买一个MRS集群。HBase集群使用Hadoop和HBase组件提供一个稳定可靠,性能优异、可伸缩、面向列的分布式云存储系统,适用于海量数据存储以及分布式计算的场景,用户可以利用HBase搭建起TB至PB级数据规模的存储系统,对数据轻松进行过滤分析,毫秒级得到响应,快速发现数据价值。
cluster_name:集群名称,在对分布式表执行读写的过程中,使用集群的配置信息查找对应的ClickHouse实例节点。 database_name:数据库名称。 table_name:数据库下对应的本地表名称,用于将分布式表映射到本地表上。 sharding_key:分片键(可选参数),分布式表会按照这个规则,将数据分发到各个本地表中。
以能够更好的进行迁移决策。 业务信息调研 大数据平台及业务的架构图。 大数据平台和业务的数据流图(包括峰值和均值流量等)。 识别平台数据接入源、大数据平台数据流入方式(实时数据上报、批量数据抽取)、分析平台数据流向。 数据在平台内各个组件间的流向,比如使用什么组件采集数据,采集
取密码)。 执行以下命令进入hbase shell,查看目前负载均衡功能是否打开: hbase shell balancer_enabled 是,执行6。 否,执行5。 在hbase shell,中执行命令打开负载均衡功能,并执行命令查看确认成功打开: balance_switch
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。 它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
主要负责存储数据、执行查询计划、副本负载均衡。 Leader Leader为Follower组中选举出来的一种角色。 Follower 一条元数据日志需要在多数Follower节点写入成功,才算成功。 Doris采用MPP的模型,节点间和节点内都是并行执行,适用于多个大表的分布式Join。 支持向量化的查询引擎、AQE(
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
Kafka是一个分布式的消息发布-订阅系统。它采用独特的设计提供了类似JMS的特性,主要用于处理活跃的流式数据。 Kafka有很多适用的场景:消息队列、行为跟踪、运维数据监控、日志收集、流处理、事件溯源、持久化日志等。 Kafka有如下几个特点: 高吞吐量 消息持久化到磁盘 分布式系统易扩展
删除ClickHouse表 本章节介绍删除ClickHouse表样例代码。 删除在创建ClickHouse表中创建的副本表和分布式表。 示例代片段参考如下: private void dropTable(String databaseName, String tableName,