检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
tch, 网络层在多个设备上的特殊安排和巧妙的前向后向计算调度,可以最大程度减小设备等待(计算空泡),从而提高训练效率。 学习率预热 不同的学习率调度器(决定什么阶段用多大的学习率)有不同的学习率调度相关超参,例如线性调度可以选择从一个初始学习率lr-warmup-init开始预
(可选)配置镜像预热 Lite Cluster资源池支持镜像预热功能,镜像预热可实现将镜像提前在资源池节点上拉取好,在推理及大规模分布式训练时有效缩短镜像拉取时间。本文将介绍如何配置镜像预热功能。 操作步骤 在ModelArts控制台左侧导航栏中找到“资源管理 > AI专属资源池
训练作业子任务名称。 start_time String 训练作业开始时间,格式为时间戳。 task_statuses Array of objects 训练在子任务状态信息。 表5 task_statuses 参数 参数类型 描述 task String 训练作业子任务名称。 exit_code
报错“BrokenPipeError: [Errno xx] Broken pipe”。 原因分析 出现该问题的可能原因如下: 在大规模分布式作业上,每个节点都在复制同一个桶的文件,导致OBS桶限流。 OBS Client连接数过多,进程/线程之间的轮询,导致一个OBS Clie
容错检查包括两个检查项:环境预检测与硬件周期性检查。当环境预检查或者硬件周期性检查任一检查项出现故障时,隔离故障硬件并重新下发训练作业。针对于分布式场景,容错检查会检查本次训练作业的全部计算节点。 下图中有四个场景,其中场景四为正常训练作业失败场景,其他三个场景下可开启容错功能进行训练作业自动恢复。
认证证书 合规证书 华为云服务及平台通过了多项国内外权威机构(ISO/SOC/PCI等)的安全合规认证,用户可自行申请下载合规资质证书。 图1 合规证书下载 资源中心 华为云还提供以下资源来帮助用户满足合规性要求,具体请查看资源中心。 图2 资源中心 销售许可证&软件著作权证书
job prepared. 训练任务准备成功 训练任务准备成功 200 ModelArts.4902 Exporting labels. 开始导出任务 开始导出任务 200 ModelArts.4904 Labels exported. 导出任务成功 导出任务成功 200 ModelArts
失败。 部分规格支持整柜购买,此时实例数量会显示为“数量*整柜”,购买的实例总数为两者的乘积。整柜购买可实现不同任务间的物理隔离,避免通信冲突,在任务规模增大的同时保证计算性能线性度不下降。整柜下的实例生命周期需保持一致,需要一起创建、一起删除。 节点高级配置 开启“节点高级配置”开关后,支持设置实例的操作系统。
'NoneType' object has no attribute 'dtype'” 日志提示“No module name 'unidecode'” 分布式Tensorflow无法使用“tf.variable” MXNet创建kvstore时程序被阻塞,无报错 日志出现ECC错误,导致训练作业失败
请参考以下指导在ModelArts Standard上训练模型。 图2 ModelArts Standard模型训练流程 表1 Standard模型训练流程 操作任务 子任务 说明 准备工作 准备训练代码 模型训练必备要素包括训练代码、训练框架、训练数据。 训练代码包含训练作业的启动文件或启动命令、训练依赖包等内容。
当数据集中的所有数据已完成标注,即“未标注”数据为空时,创建的团队标注任务,因为没有数据需要标注,不会给团队成员发送标注邮件。在发起团队标注任务时,请确保数据集中存在“未标注”数据。 只有当创建团队标注任务时,标注人员才会收到邮件。创建标注团队及添加标注团队的成员并不会发送邮件。
定的问题,这是使用warm up的原因。等到训练过程基本稳定之后就可以使用原先设定的初始学习率进行训练。 原因分析 Tensorflow分布式有多种执行模式,mox会通过4次执行50 step记录执行时间,选择执行时间最少的模型。 处理方法 创建训练作业时,在“运行参数”中增加参
deleteSamples 停止自动标注任务 dataset stopTask 创建团队标注任务 dataset createWorkforceTask 删除团队标注任务 dataset deleteWorkforceTask 启动团队标注验收的任务 dataset startWorkforceSamplingTask
删除消息订阅Subscription 查询消息订阅Subscription详情 更新消息订阅Subscription 创建工作流定时调度 查询工作流定时调度详情 删除工作流定时调度信息 更新工作流定时调度信息
训练作业子任务名称。 start_time String 训练作业开始时间,格式为时间戳。 task_statuses Array of objects 训练在子任务状态信息。 表5 task_statuses 参数 参数类型 描述 task String 训练作业子任务名称。 exit_code
1”时,创建的是单机训练作业,ModelArts只会在一个节点上启动一个训练容器,该训练容器独享所选规格的计算资源。 当“实例数 > 1”时,创建的是分布式训练作业,更多分布式训练配置请参见分布式训练功能介绍。 永久保存日志 选择CPU或者GPU资源时,支持选择是否关闭“永久保存日志”开关。 开关打开(默认打开)
lab使用Standard Notebook实例进行AI开发。 如果您有自己的算法,想改造适配后迁移到ModelArts Standard平台上进行训练和推理,您可以参考使用自定义算法构建模型(手写数字识别)。 更多入门实践,请参考《ModelArts入门实践》章节。如果您有其他
应用示例 创建图像分类数据集并进行标注任务 创建并完成图像分类的智能标注任务 开发环境的应用示例 以PyTorch框架创建训练作业(新版训练) 创建和修改工作空间 管理ModelArts服务的委托授权
训练作业的“/cache”目录是否安全? 训练作业一直在等待中(排队)? 创建训练作业时,超参目录为什么有的是/work有的是/ma-user? 在ModelArts创建分布式训练时如何设置NCCL环境变量? 在ModelArts使用自定义镜像创建训练作业时如何激活conda环境? 父主题: Standard训练作业
服务部署、启动、升级和修改时,资源不足如何处理? 问题现象 启动服务失败,报错:资源不足,服务调度失败。(Schedule failed due to insufficient resources. Retry later.或ModelArts.3976:No resources