检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Standard自动学习 ModelArts自动学习与ModelArts PRO的区别是什么? 在ModelArts中图像分类和物体检测具体是什么? 在ModelArts自动学习中模型训练图片异常怎么办? 在ModelArts自动学习中,如何进行增量训练? 创建自动学习项目时,如何快速创建OBS桶及文件夹?
multi-lora 什么是multi-lora LoRA(Low-Rank Adaptation)是一种适用于大模型的轻量化微调技术方法。原理是通过在模型层中引入低秩矩阵,将大模型的权重降维处理,来实现高效的模型适配。相比于传统的微调方法,LoRA不仅能大幅减少所需的训练参数,
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
发布解决方案 如果你已经注册成为了AI Gallery平台上的合作伙伴,AI Gallery支持发布共享你的解决方案。 在“AI Gallery”页面中,单击右上角“我的Gallery > 我的主页”进入个人中心页面。 左侧菜单栏选择“解决方案”进入解决方案列表页,单击右上方的“发布”,进入发布解决方案页面。
日志提示“No module name 'unidecode'” 问题现象 从mindspore开源gitee中master分支下载的tacotron2模型,修改配置文件后上传ModelArts准备训练,日志报错提示:No module name 'unidecode'。 原因分析
get-docker.sh sh get-docker.sh 如果docker images命令可以执行成功,表示Docker已安装,此步骤可跳过。 启动docker。 systemctl start docker 确认Docker Engine版本。执行如下命令。 docker version
Lite Server GPU A系列裸金属服务器如何进行RoCE性能带宽测试? GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 如何将Ubuntu20.04内核版本从低版本升级至5.4.0-144-generic? 如何禁止Ubuntu 20.04内核自动升级?
入驻AI Gallery 如果需要在AI Gallery中发布HiLens、报名实践活动或发布AI说,则需要先完成入驻AI Gallery。 如果没有入驻过AI Gallery,在报名实践活动或发布AI说时,将跳转至“欢迎入驻AI Gallery”页面。 在“欢迎入驻AI Gal
推理服务精度评测 本章节介绍了2种精度测评方式,分别为Lm-eval工具和MME工具。 lm-eval工具适用于语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等,该工具为离线测评,不需要启动推理服务。
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Standard上的预训练和全量微调方案。 本方案目前仅适用于部分企业客户,完成本方案的部署,需要先联系您所在企业的华为方技术支持。