检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
部署服务 评估模型后,就可以部署服务,开发属于自己的零售商品分类应用,此应用用于识别自己所上传的商品图片,也可以直接调用对应的API和SDK识别。 前提条件 已在视觉套件控制台选择“零售商品识别工作流”新建应用,并评估模型,详情请见评估模型。 由于部署服务涉及ModelArts功能,需消耗资源,要确保账户未欠费。
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理
选择数据 在使用第二相面积含量测定工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入基于第二相面积含量测定工作流创建的其他应用中已创建的数据集。 新建训练数据集 导入数据集 前提条件 已在视觉套
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型交并比和误差变化。 前提条件 已在视觉套件控制台选择“第二相面积含量测定工作流”新建应用,并已执行完“数据标注”步骤,详情请见标注数据。 训练模型 在“模型训练”页面配置训练参数,开始训练模型。 在“参数配置”
框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别的图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。
框选识别区 在文字识别过程中,需要确定图片中识别的文字位置,这就需要在图片模板中框选识别区。 识别区指图片中待识别的文字位置。所有需要识别的图片中都会包含此识别区的字段,且位置固定不变,因此模型可以通过识别区找到需要识别内容的位置。 前提条件 已在文字识别套件控制台选择“通用单模
工作流介绍 工作流简介 功能介绍 支持用户自定义多个文字识别模板,通过模型训练,自动识别图片所需使用的模板,从而支持从大量不同板式图像中提取结构化信息。 适用场景 用户认证识别 识别证件中关键信息,节省人工录入,提升效率,降低用户实名认证成本,准确快速便捷。 快递单自动填写 识别
框选识别区 在文字识别过程中,需要确定图片中识别的文字位置,这就需要在图片模板中框选识别区。 识别区指图片中待识别的文字位置。所有需要识别的图片中都会包含此识别区的字段,且位置固定不变,因此模型可以通过识别区找到需要识别内容的位置。 前提条件 已在文字识别套件控制台选择“多模板分
通用文本分类工作流 工作流介绍 准备数据 选择数据 标注数据 训练模型 评估模型 部署服务 发布数据集 管理数据集版本 父主题: 自然语言处理套件
准备数据 在使用通用实体抽取工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计实体标签 首先需要确定好文本实体的标签,即希望抽取出文本的一种结果。例如“时间”、“地点”、“人物”等。 数据集要求 文件格式要求为txt或者csv,且编码格式为“UTF-8”格式,文件大小不能超过8MB。
选择数据 在使用通用实体抽取工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入在自然语言处理套件其他应用中已创建的文本数据集。 新建数据集 导入数据集 前提条件 已在自然语言处理套件控制台选择“
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“第二
HiLens套件(使用HiLens安全帽检测技能开发可训练技能) ModelArts Pro的HiLens套件提供了安全帽检测技能,通过工作流指引支持自主上传数据集,零代码构建安全帽检测技能,并一键下发到端侧设备HiLens Kit;针对难例数据,可快速迭代更新技能,提升精度。
框选参照字段 在文字识别过程中,套件会检查所识别图片与模板图片是否为同一种模板,并将识别图片校正后再提取结构化信息,支持图片平移、旋转与拉伸变换。 为了检查并校正待识别的图片,这就需要在模板图片中指定参照字段。通过参照字段的文字内容来判断是否属于同一种模板,通过参照字段的位置来校正待识别图片。
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 前提条件 已在文字识别套件控制台选
工作流介绍 工作流简介 超市、零售商店等场景下,商品种类更新速度快,商品识别技术会提升商品优化和运营效率。ModelArts Pro提供零售商品识别工作流,为您提供高精度的商品识别算法,提高零售商品新品上线效率。 功能介绍 自主构建高精度的商品识别算法,帮助提高商品新品上线效率,提升消费者体验。
选择数据 在使用热轧钢板表面缺陷检测工作流开发应用时,您需要选择训练数据集,后续训练模型操作是基于您选择的训练数据集。 训练数据集可以选择创建一个新的数据集,也可以选择导入基于热轧钢板表面缺陷检测工作流创建的其他应用中已创建的数据集。 新建训练数据集 导入数据集 前提条件 已在视
训练模型 针对已标注完成的训练数据,开始训练模型,您可以查看训练的模型准确率和误差变化。 前提条件 已在视觉套件控制台选择“热轧钢板表面缺陷检测工作流”新建应用,并已执行完“数据选择”步骤,详情请见选择数据。 训练模型 在“模型训练”页面,单击“开始训练”。 模型训练一般需要运行
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
准备数据 在使用热轧钢板表面缺陷检测工作流开发应用之前,您需要提前准备用于模型训练的数据,上传至OBS服务中。 设计钢板标签 首先需要考虑好热轧钢板表面缺陷的类型标签,即能识别出热轧钢板表面的缺陷类型。例如以“scratch”、“scar”、“pit”等作为热轧钢板表面缺陷的类型。