检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
安装SDK pip直接安装 执行如下命令: pip install pangu_kits_app_dev_py 本地导入 从support网站上下载pangu-kits-app-dev-py的whl包。 建议使用conda创建一个新的python环境,python版本选择3.9。
选择模型 选择需要部署的模型。 推理资源 选择非限时免费的模型时显示。选择盘古大模型服务提供的在线推理资产。 部署方式 选择“在线部署”,即将算法部署至盘古大模型服务提供的资源池中。 推理资产 选择“已购资产”。 限时免费:使用免费的推理资源,仅支持部署一个实例。 已购资产:由用户
创建一个训练数据集 训练数据集是用于模型训练的实际数据集。通常,通过创建一个新的数据集步骤,可以生成包含某个特定场景数据的数据集。例如,这个数据集可能只包含用于训练摘要提取功能的数据。然而,在实际模型训练中,通常需要结合多种任务类型的数据,而不仅限于单一场景的数据。因此,实际的训
创建一个新的数据集 数据集是指用于训练模型或评估的一组相关数据样本。存储在OBS中的数据可以通过数据集的形式放置在到盘古平台中,便于管理。 在创建数据集之前,请先将数据上传至OBS平台。 上传数据至OBS 登录盘古大模型套件平台。 在左侧导航栏中选择“数据工程 > 数据管理”,单击界面右上角“创建数据集”。
请求URI 参数 说明 URI-scheme 传输请求的协议,当前所有API均采用HTTPS协议。 Endpoint 承载REST服务端点的服务器域名或IP。 resource-path 资源路径,即API访问路径。从具体API的URI模块获取。 query-string 查询参数,可选
为什么微调后的模型,回答总是在重复某一句或某几句话 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“
微调数据来源: 需要针对涉及的模块分别构造相关的微调数据。 query改写模块 来源:互联网开源数据集 问答模块 来源一:互联网开源数据集,如政府网站网页、政府在线问答公开数据、政务百科等。 来源二:特定的私域数据,针对于具体场景和项目需求,收集相关的文本数据。比如通过与当地政府的政数局
功能总览 功能总览 全部 数据工程工具链 模型开发工具链 应用开发工具链 能力调测 应用百宝箱 数据工程工具链 数据是大模型训练的基础,为大模型提供了必要的知识和信息。数据工程工具链作为盘古大模型服务的重要组成部分,具备数据获取、清洗、配比和管理等功能。 该工具链能够高效收集和处
云容器引擎-成长地图 | 华为云 盘古大模型 盘古大模型服务(PanguLargeModels)致力于深耕行业,打造多领域行业大模型和能力集。盘古大模型能力通过ModelArts Studio大模型开发平台承载,它提供了包括盘古大模型在内的多种大模型服务,提供覆盖全生命周期的大模型工具链。
数据量足够,但质量较差,可以微调吗 对于微调而言,数据质量非常重要。一份数据量少但质量高的数据,对于模型效果的提升要远大于一份数据量多但质量低的数据。若微调数据的质量较差,那么可能会导致模型学习到一些错误或者不完整的信息,从而影响模型的准确性和可靠性。因此,不建议您直接使用低质量数据进行微调。
模型支持的区域 区域是一个地理区域的概念。我国地域面积广大,由于带宽的原因,无法仅依靠一个数据中心为全国客户提供服务。因此,根据地理区域的不同将全国划分成不同的支持区域。 盘古大模型当前仅支持西南-贵阳一区域。 图1 盘古大模型服务区域 父主题: 模型能力与规格
获取API认证鉴权信息(获取Token) 登录“我的凭证 > API凭证”页面,获取user name、domain name、project id。 project id参数需要与盘古服务部署区域一致。例如,盘古大模型部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的project
文本补全 功能介绍 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全。它可以用来做文本生成、自动写作、代码补全等任务。 URI POST /v1/{project_id}/deployments/{deployment_id}/text/completions 表1
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格和格式等。 撰写提示词时,可以设置提示词变量,即在提示词中通过添加占位符{{ }}标识,表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将
无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 一般来说,建议采用增量预训练的方式让模型学习领域知识,但预训练对数据量的要求较大,如果您的无监督文档量级过小,达不到预训练要求,您可以通过一些手段将其转换为有监督数据,再将转换后的领域知识与目标任务数据混合,使用微调的方式让模型学习。
如何判断训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般
为什么微调后的模型,评估结果很好,但实际场景表现却很差 当您在微调过程中,发现模型评估的结果很好,一旦将微调的模型部署以后,输入一个与目标任务同属的问题,回答的结果却不理想。这种情况可能是由于以下几个原因导致的,建议您依次排查: 测试集质量:请检查测试集的目标任务和分布与实际场景
监听Agent 一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听,输出中间步骤。 AgentListener的定义如下: class AgentListener(ABC): """Agent监听,允许对Agent的各个阶段进行处理
监听Agent 一次Agent的响应如果涉及到多个任务的分解,往往会执行比较长的时间,此时可以对agent的执行过程进行监听。 AgentListener的定义如下: public interface AgentListener { /** * Session启动时调用
打基础 先制定一个能够明确表达主题的提示词(若模型训练时包含相似任务,可参考模型训练使用的提示词),再由简至繁,逐步增加细节和说明。打好基础是后续提示词优化的前提,基础提示词生成效果差,优化只会事倍功半。 例如,文学创作类可以使用“请创作一个关于{故事主题}的故事”,邮件写作类可