检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
为什么微调后的模型,回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大
配置AI助手工具 各种功能的API经封装后,将形成一个个工具,AI助手通过大模型来调用不同的工具,实现相应的功能。在创建AI助手前,需要将使用的功能封装为工具。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理
补说明 对任务进行补充说明,如补充任务要求、规范输出的格式等。将想要的逻辑梳理表达出来,会让生成效果更加符合预期。说明需要逻辑清晰、无歧义。 设计任务要求 要求分点列举: 要求较多时需要分点列举,可以使用首先\然后,或1\2\3序号分点提出要求。每个要求步骤之间最好换行(\n)分
应用场景 智能客服 在政企场景中,传统的智能客服系统常受限于语义泛化能力和意图理解能力,导致用户需求难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数
返回结果 状态码 请求发送以后,您会收到响应,包含状态码、响应消息头和消息体。 状态码是一组从1xx到5xx的数字代码,状态码表示了请求响应的状态,完整的状态码列表请参见状态码。 对于Pangu服务接口,如果调用后返回状态码为“200”,则表示请求成功。 响应消息头 对应请求消息
什么是提示词工程 什么是提示词工程 提示工程是一个较新的学科,应用于开发和优化提示词(Prompt),帮助用户有效地将语言模型用于各种应用场景和研究领域。掌握提示词工程相关技能将有助于用户了解大型语言模型的能力和局限性。 提示工程不仅涉及设计和研发提示词,还包括与大型语言模型的交
预览提示词效果 提示词撰写完成后,可以通过输入具体的变量值,组成完整的提示词,查看不同提示词在模型中的使用效果。 在撰写提示词页面,找到页面右侧变量输入区域,在输入框中输入具体的变量值信息。 输入变量值后预览区域会自动组装展示提示词。用户也可以直接选择已创建的变量集填入变量值信息
盘古自然语言大模型的适用场景有哪些 自然语言处理大模型是一种参数量极大的预训练模型,是众多自然语言处理下游任务的基础模型。学术界和工业界的实践证明,随着模型参数规模的增加,自然语言处理下游任务的效果显著提升,这得益于海量数据、大量算力以及深度学习的飞跃发展。 基于自然语言处理大模
创建子用户并授权使用盘古 如果您需要对华为云上购买的盘古资源,为企业中的员工设置不同的访问权限,以达到不同员工之间的权限隔离,您可以使用统一身份认证服务(IAM)并结合盘古大模型套件平台提供的“角色管理”功能实现精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的
模型训练所需数据量与数据格式要求 盘古大模型套件平台支持NLP大模型的训练。不同模型训练所需的数据量和数据格式有所差异,请基于数据要求提前准备训练数据。 数据量要求 自监督训练 在单次训练任务中,一个自监督训练数据集内,上传的数据文件数量不得超过1000个,单文件大小不得超过1G
权限管理 如果您需要为企业员工设置不同的访问权限,以实现对华为云上购买的盘古大模型资源的权限隔离,可以使用统一身份认证服务(IAM)和盘古角色管理功能进行精细的权限管理。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,可以跳过本章节,不影响您使用服务的其他功能。
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
为什么微调后的模型,输入与训练样本相似的问题,回答与训练样本完全不同 当您将微调的模型部署以后,输入一个已经出现在训练样本中,或虽未出现但和训练样本差异很小的问题,回答完全错误。这种情况可能是由于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来
启用模型内容审核 内容审核是文本的检测技术,可自动检测涉黄、涉暴、违规等内容,对用户向模型输入的内容、模型输出内容进行内容审核,帮助客户降低业务违规风险。 授权使用华为云内容审核,有效拦截大模型输入输出的有害信息,保障模型调用安全。 授权后,在调用盘古大模型能力时,模型的输入和输
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
启用盘古大模型搜索增强能力 大模型在训练时使用的是静态的文本数据集,这些数据集通常是包含了截止到某一时间点的所有数据。因此,对于该时间点之后的信息,大模型可能无法提供。 通过将大模型与盘古搜索结合,可以有效解决数据的时效性问题。当用户提出问题时,模型先通过搜索引擎获取最新的信息,
基本概念 训练相关概念 表1 训练相关概念说明 概念名 说明 Token 令牌(Token)是指模型处理和生成文本的基本单位。Token可以是词或者字符的片段。模型的输入和输出的文本都会被转换成Token,然后根据模型的概率分布进行采样或者计算。 例如,在英文中,有些组合单词会根
创建模型评估数据集 在收集评估数据集时,应确保数据集的独立性和随机性,并使其能够代表现实世界的样本数据,以避免对评估结果产生偏差。对评估数据集进行分析,可以帮助了解模型在不同情境下的表现,从而得到模型的优化方向。 在“数据工程 > 数据管理”中创建“评测”类型的数据集作为评估数据集,数据集创建完成后需要执行发布操作。
多轮对话 功能介绍 基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 URI POST /v1/{project_id}/deployments/{deployment_id}/chat/completions 表1 路径参数 参数 是否必选 参数类型 描述 project_id
CoT思维链 对于复杂推理问题(如数学问题或逻辑推理),通过给大模型示例或鼓励大模型解释推理过程,可以引导大模型生成准确率更高的结果。 单样本/多样本 可以在提示词中提供示例,让模型先学习后回答,在使用这种方法时需要约束新样例不能照抄前面给的参考样例,新样例必须多样化、不能重复等