检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据调研 数据调研主要包括如下方面: 表1 数据调研方法表 调研内容 调研目的 举例 数据类型 根据数据类型选择合适的迁移工具 HDFS、HBase、MySQL等 数据量 历史数据量,用于评估历史数据迁移周期; 日增量数据,用于评估每日增量数据同步周期。
通过数据采集和提取,将原始数据收集到大数据平台进行后续处理和分析。 数据集成: 数据集成是将来自不同数据源的数据进行整合和转换的过程。这包括数据清洗、数据预处理、数据格式转换、数据合并等操作,以确保数据的一致性和准确性。
数据无需复杂的抽取、转换、加载,使用SQL或程序就可以对云上CloudTable、RDS、DWS、CSS、OBS、ECS自建数据库以及线下数据库的异构数据进行探索。详细信息请参考官网文档。
数据层迁移方案 数据层主要负责业务数据的持久化,为上层业务逻辑的实现提供数据支持,数据层包括两类数据,结构化数据和非结构化数据。结构化数据包含各类数据库,例如MySQL数据库、MongoDB数据库等,非结构化数据包含对象存储、各类文件存储等。
大数据任务调度平台设计 设计云上的大数据任务调度平台部署架构时,建议参考原则如下: 优先用大数据云服务:如果源端是自建的大数据任务调度平台和组件,在目标云平台上有对应的云服务,且功能、性能、兼容性都满足,经评估改造工作量很小,建议部署架构设计时,优先采用大数据云服务。
数据验证方法 数据分为数据库数据、中间件数据和文件数据,这三种数据的一致性验证方法和工具不同: 数据库数据一致性验证的方法如下表所示。
大数据架构设计 设计原则 大数据集群设计 大数据任务调度平台设计 大数据参考架构 华为云大数据组件 父主题: 方案设计
线下DES磁盘拷贝 数据量较大,增量少的TB级数据 - OMS工具+回源迁移:对象存储迁移服务OMS作为易用、高效的线上数据迁移服务,通过调用源端对象存储的SDK,可快速传输数据并对数据进行加密存储,将数据复制到华为云OBS,可以帮助把对象存储数据从其他云服务商对象存储服务中的数据轻松
大数据迁移批次规划说明 大数据迁移上云时,是选择整体迁移还是分批迁移,原则如下: 整体迁移的场景: 规模小:大数据平台数据量少(TB级),计算任务数量不多,可以采用整体迁移的方法,先在云上部署大数据平台,然后全量迁移元数据、数据和任务。
大数据调研 平台调研 数据调研 任务调研 父主题: 调研评估
大数据迁移 调研 设计 部署 迁移 验证 切换 保障 父主题: 采用实施
数据边界 华为云提供了全方位数据边界保护您的敏感数据,全方位数据边界基于身份控制策略、网络控制策略和资源控制策略构筑起一道坚固的数据安全屏障。确保只有经过严格验证的可信身份,在符合安全标准的可信网络环境中,方能获得对特定资源的访问权限,从而保障数据安全。
大数据集群设计 设计云上的大数据集群部署架构时,建议参考原则如下: 优先用大数据云服务:如果源端是自建的大数据集群,在目标云平台上有对应的云服务,且功能、性能、兼容性都满足,经评估改造工作量很小,建议设计大数据集群部署架构时,优先采用大数据云服务。
大数据 大数据是指规模庞大且复杂的数据集合,对于企业来说,如何收集、存储和分析大数据具有重要意义。以下是大数据如何使能业务创新、与业务结合并推动业务现代化的几个方面: 数据驱动决策:大数据分析可以帮助企业从海量数据中提取有价值的信息和洞察力,为决策提供支持。
全方位数据边界 全方位数据边界基于身份控制策略、网络控制策略和资源控制策略构筑起一道坚固的数据安全屏障。确保只有经过严格验证的可信身份,在符合安全标准的可信网络环境中,方能获得对特定资源的访问权限,从而保障数据安全。
平台调研 大数据调研简介 大数据迁移是指将大数据集群、大数据任务调度平台和大数据应用从一个运行环境迁移到另一个运行环境的过程。 图1 大数据调研的对象 大数据迁移需要调研4部分信息: 大数据平台调研,包括大数据集群、任务调度平台、数据流向。
调研 大数据迁移是指将大数据集群、大数据任务调度平台和大数据应用从一个运行环境迁移到另一个运行环境的过程。它包含如下三个模块,本节重点介绍的是大数据集群和大数据任务调度平台的迁移,大数据应用的迁移方法请参考应用迁移上云,本节只介绍差异部分。
市场上安全厂商众多,各自提供不同的产品和解决方案,产生了大量格式各异的日志和数据,缺乏统一的标准。这使得安全信息的整合和分析变得困难,无法形成全局性的安全态势感知。 同时,合规要求的提高也给企业带来了新的挑战。
设计数据迁移方案 大数据的数据迁移涉及到3类数据,如下表: 表1 大数据迁移的三类数据 分类 说明 元数据 Hive元数据或外置元数据 存量数据 历史数据,短期内不会变化 增量数据 数据定期更新 这3类数据的迁移方法如下: 表2 大数据三类数据的迁移方式 数据分类 迁移方法 元数据
验证 数据校验 数据库的对比方法有数据库内容对比、对象对比、行数对比,文件的对比方法有文件数量对比,大小对比,内容对比。具体的数据对比的方法请参考章节数据验证的内容。 任务验证 大数据任务迁移后,要确保作业能够正常运行、产生准确的结果,并且满足性能要求。