检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
训练智能客服系统大模型需要考虑哪些方面 根据智能客服场景,建议从以下方面考虑: 根据企业实际服务的场景和积累的数据量,评估是否需要构建行业模型,如电商、金融等。 根据每个客户的金牌客服话术,可以对对话模型进行有监督微调,进一步优化其性能。 根据每个客户的实际对话知识,如帮助文档、
Agent(智能代理) Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统和执行系统。 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Age
意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 写作示例
Agent(智能代理) Agent(智能代理),用于对复杂任务的自动拆解与外部工具调用执行,一般包括任务规划、记忆系统、执行系统: 任务规划:将复杂目标任务分解为小的可执行子任务,通过评估、自我反思等方式提升规划成功率。 记忆系统:通过构建记忆模块去管理历史任务和策略,并让Age
stic Search)的方式快速实现问答系统,称为检索增强生成(Retrieval Augmented Generation,RAG)技术方案。检索增强生成方案被大量用在智能问答场景中,也称为检索增强问答,如政务问答场景,行业客服智能问答场景等。 下面将以一个具体的政务问答助手
开源模型 SDK支持兼容OpenAI-API规范的开源模型。例如,用vllm框架使用OpenAI-API启动推理服务。当前鉴权方式支持AppCode鉴权和华为云的APIG简易认证方式。配置文件需要指定url和key,配置项为: sdk.llm.openai.url=https:/
应用场景 智能客服 在政企场景中,传统的智能客服系统常受限于语义泛化能力和意图理解能力,导致用户需求难以准确捕捉,频繁转接至人工客服。这不仅增加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数
介绍文字识别服务的产品、技术指导和使用指南 OCR系列介绍 文字识别服务在计算机视觉的重要性、基本技术和最新进展 智能客服 您好!我是有问必答知识渊博的的智能问答机器人,有问题欢迎随时求助哦! 社区求助 华为云社区是华为云用户的聚集地。这里有来自容器服务的技术牛人,为您解决技术难题。
2_agent_v2”,如上例所示,因此模型的url要配置为Pangu-NLP-N2-Default模型的地址。 支持注册开源模型,开源模型的定义可参考开源模型。 final LLM llm = LLMs.of(LLMs.OPENAI, LLMConfig.builder()
Tool分为StaticTool(静态工具)和DynamicTool(动态工具)两类。静态工具需要开发者事先定义好,即在编译期定义与实例化。对于动态工具,开发者可以在系统运行时动态构建,即在运行态定义与实例化。 StaticTool(静态工具) 静态工具可以通过注解的方式新增,在run接口中实现工具的功能,例如:
er添加了一个query_preprocessor,它的作用为对用户输入的多轮对话进行改写,会将改写后的结果作为工具检索的输入,这里使用了系统内置的ConversationRewriteSkill,它的作用为将多轮对话改写为单轮。二是在创建一个Agent后,调用了set_tool
*/ MESSAGE_COMPLETED("session.message.completed"); 父主题: Agent(智能代理)
Tool分为StaticTool(静态工具)和DynamicTool(动态工具)两类,静态工具需要开发者事先定义好,即在编译期定义与实例化;动态工具开发者可以在系统运行时动态构建,即在运行态定义与实例化。 StaticTool(静态工具) 静态工具可以通过继承Tool的方式新增,在_run接口中实现工具的功能,例如:
上面的例子中,当满足if判断条件时,就会直接终止agent的执行,并且agent的finalAnswer被设置为工具的原始返回值。 父主题: Agent(智能代理)
gent-L0.C模型的地址。 with_prompt参数配置为True,prompt的拼接由Agent托管处理。 父主题: Agent(智能代理)
StaticTool<GetReimbursementLimitTool.InputParam, String> { 父主题: Agent(智能代理)
预期Agent返回reportType为欠税信息体检的Json,呈现给终端用户 session = agent.run_step(session) # 终端用户确认,调用外部系统,进一步确认公司名称和编号,补充信息后,让Agent继续执行 AgentSessionHelper.set_user_feedback(session
}); 上述例子中,当满足if判断条件时,会直接终止Agent的执行,且finalAnswer被设置为工具的原始返回值。 父主题: Agent(智能代理)
* 答复:"已为您预定2024年05月10日下午3点到8点的A05会议室。请准时参加会议。" */ } 父主题: Agent(智能代理)
ver添加了一个queryPreprocessor,它的作用为对用户输入的多轮对话进行改写,会将改写后的结果作为工具检索的输入,这里使用了系统内置的ConversationRewriteSkill,它的作用为将多轮对话改写为单轮。二是在创建一个Agent后,调用了setToolR