检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Compare工具比对GPU训练脚本和NPU训练脚本之间是否存在差异。例如是否GPU环境下开启了FA但是NPU上未开启FA。 三方库版本比对 大模型训练通常会使用Deepspeed、Megatron等三方库,需要确保这些三方库的版本一致。 环境版本更新 这一项仅在条件允许的情况下进行,根据精度问题定位经验,部分问题是
用于文本到视频生成。通过继承一个预训练的文本到图像模型CogView2,还提出了多帧速率分层训练策略,以更好地对齐文本和视频剪辑。作为一个开源的大规模预训练文本到视频模型,CogVideo性能优于所有公开可用的模型,在机器和人类评估方面都有很大的优势。 方案概览 本方案介绍了在M
image get-image查询ModelArts已注册镜像 Dockerfile一般需要提供一个基础镜像的地址,目前支持从docker hub等开源镜像仓拉取公开镜像,以及SWR的公开或私有镜像。其中ma-cli提供了查询ModelArts预置镜像和用户已注册镜像列表及SWR地址。 $ma-cli
调优完成后,默认将AOE生成的知识库保存在“/root/Ascend/latest/data/aoe”路径下,同时会在aoe_output路径下输出对应的mindir模型,由于当前模型并没有吸收知识库信息,所以性能不佳,因此需要在保留AOE知识库的情况下,再次进行转换,以达到较优性能。
nvidia/cuda:11.1.1-runtime-ubuntu18.04 # 安装 vim / curl / net-tools / ssh 工具(依然使用华为开源镜像站) RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
nvidia/cuda:11.1.1-runtime-ubuntu18.04 # 安装 vim / curl / net-tools / ssh 工具(依然使用华为开源镜像站) RUN cp -a /etc/apt/sources.list /etc/apt/sources.list.bak && \
方案优势 云端开发调试优势: 环境保持一致 配置一键完成 代码远程调试 资源按需使用 准备工作 下载VS Code IDE,下载路径:开源Visual Studio Code。根据不同的操作系统选择不同的安装包。 创建Notebook实例。 登录ModelArts控制台,单击左侧导航“开发环境
这些可用区通过延迟低、吞吐量高且冗余性高的网络连接在一起。利用可用区,您可以设计和操作在可用区之间无中断地自动实现故障转移的应用程序和数据库。与传统的单个或多个数据中心基础设施相比,可用区具有更高的可用性、容错性和可扩展性。 ModelArts通过对DB的数据进行备份,保证在原数据被破坏或损坏的情况下可以恢复业务。
install等方式安装conda环境依赖。 容器镜像的大小建议小于15G,详细的自定义镜像规范要求请参见训练作业自定义镜像规范。 建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层
9/site-packages/colossalai/zero/low_level/low_level_optim.py Step4 下载数据集 训练使用的开源数据集UCF101.rar,执行如下命令下载数据集并处理。数据集相关介绍参见https://www.crcv.ucf.edu/data/UCF101
Triton框架迁移操作步骤 本教程基于nvidia官方提供的nvcr.io/nvidia/tritonserver:23.03-py3镜像进行适配,使用开源大模型llama7b进行推理任务。 增加用户ma-user。 Triton镜像中默认已存在id为1000的triton-server用户,
注册并登录华为云,且创建好OBS桶用于存储数据和模型。 订阅并使用AI案例 登录“AI Gallery”。 选择“案例库”,在下拉框中单击“案例库 >”,进入AI案例库首页,该页面展示了所有共享的案例。 根据业务场景搜索所需的免费案例,单击案例进入详情页面。 在详情页面您可以查看案例
install等方式安装conda环境依赖。 容器镜像的大小建议小于15G,详细的自定义镜像规范要求请参见训练作业自定义镜像规范。 建议通过开源的官方镜像来构建,例如PyTorch的官方镜像。 建议容器分层构建,单层容量不要超过1G、文件数不大于10w个。分层时,先构建不常变化的层
Calling使用场景说明 使用场景 说明 增强能力 大模型通过Function Calling可以调用外部工具或服务,例如实时数据检索、文件处理、数据库查询等,从而扩展其能力。 实时数据访问 由于大模型通常基于静态数据集训练,不具备实时信息。Function Calling允许模型访问最新的数据,提供更准确、更及时的回答。
Gallery会将资产保存在AI Gallery官方的SWR仓库内。 对于用户提供的一些个人信息,AI Gallery会保存在数据库中。个人信息中的敏感信息,如手机,邮箱等,AI Gallery会在数据库中做加密处理。 AI Gallery的更多介绍请参见《AI Gallery》。 父主题: 安全
数据存储 如何对OBS的文件重命名? Notebook停止或者重启后,“/cache”下的文件还存在么?如何避免重启? 如何使用pandas库处理OBS桶中的数据? 在Notebook中,如何访问其他账号的OBS桶? JupyterLab默认工作路径是什么? 父主题: Standard
如何查看Notebook使用的cuda版本? 如何打开ModelArts开发环境的Terminal功能? 如何在Notebook中安装外部库? 如何获取本机外网IP? 如何解决“在IOS系统里打开ModelArts的Notebook,字体显示异常”的问题? Notebook有代理吗?如何关闭?
编写训练代码 训练模型时引用依赖包,如何创建训练作业? 训练作业常用文件路径是什么? 如何安装C++的依赖库? 训练作业中如何判断文件夹是否复制完毕? 如何在训练中加载部分训练好的参数? 训练作业的启动文件如何获取训练作业中的参数? 训练作业中使用os.system('cd xxx')无法进入相应的文件夹?
Notebook中安装依赖包报错ERROR: HTTP error 404 while getting xxx Notebook中已安装对应库,仍报错import numba ModuleNotFoundError: No module named 'numba' JupyterLab中文件保存失败,如何解决?
代码都被直接复制粘贴到同一个文件中,而不是调用某些抽象提取出的模块化库。Diffusers的这种设计原则的好处是代码简单易用、对代码贡献者友好。然而,这种反软件结构化的设计也有明显的缺点。由于缺乏统一的模块化库,对于昇腾适配而言变得更加复杂,必须针对每个不同业务的Pipeline进行单独适配。