检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
_output/llama2-13b/saved_models/。 更多查看训练日志和性能操作,请参考查看日志和性能章节。 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.906)
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907)
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.910)
下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.910)
loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定平缓。 图2 查看日志和性能 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.910)
准备工作 准备环境 准备代码 准备镜像环境 准备数据(可选) 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.909)
模型NPU卡数、梯度累积值取值表 各个模型训练前文件替换 NPU_Flash_Attn融合算子约束 BF16和FP16说明 录制Profiling 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.909)
yaml创建出的所有工作负载Pod,需要先找到config.yaml所在路径,并执行以下命令。 kubectl delete -f config.yaml 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.909)
准备资源 创建专属资源池 本文档中的模型运行环境是ModelArts Standard,用户需要购买专属资源池,具体步骤请参考创建资源池。 资源规格要求: 计算规格:用户可参考表1。 硬盘空间:至少200GB。 昇腾资源规格: Ascend: 1*ascend-snt9b表示昇腾单卡。
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 数据集下载 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.911)
准备代码 本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
下。 最后,请参考查看日志和性能章节查看LoRA微调的日志和性能。了解更多ModelArts训练功能,可查看模型开发简介。 父主题: 主流开源大模型基于Standard+OBS+SFS适配PyTorch NPU训练指导(6.3.907)
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
int8_model.save_pretrained(output_path,safe_serialization=False) 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.911)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 父主题: 主流开源大模型基于Standard+OBS适配PyTorch NPU训练指导(6.3.909)
准备数据 本教程使用到的训练数据集是Alpaca数据集。您也可以自行准备数据集。 Alpaca数据集 本教程使用Alpaca数据集,数据集的介绍及下载链接如下。 Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令
gz -C /usr/bin/ # 查看是否安装成功 nerdctl -v 安装buildkit工具。buildkit是从Docker从公司开源出来的下一代镜像构建工具,支持OCI标准的镜像构建,nerdctl需要结合buildkit一起使用。buildkit由两部分组成: bui
准备环境 本文档中的模型运行环境是ModelArts Lite Server。请参考本文档要求准备资源环境。 资源规格要求 计算规格:不同模型训练推荐的NPU卡数请参见表2。 硬盘空间:至少200GB。 Ascend资源规格: Ascend: 1*ascend-snt9b表示Ascend单卡。
transformers==4.45.0 修改为:transformers==4.44.2 为了避免因使用不同版本的 transformers 库进行训练和推理而导致冲突的问题,建议用户分别为训练和推理过程创建独立的容器环境。 通过运行install.sh脚本,还会git clone下