检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
管理Lite Cluster资源池的游离节点 如果资源中存在游离节点,即没有被纳管到资源池中的节点,可在“AI专属资源池 > 弹性集群Cluster >节点”下查看此类节点的相关信息。 系统支持对游离节点进行续费、退订、开通/修改自动续费、添加/编辑资源标签、删除资源标签、搜索等操作。
启动pod成功 执行如下命令查看pod日志,若打印类似下图信息表示服务启动成功。 kubectl logs -f ${pod_name} 参数说明: ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 图2 启动服务成功
表2 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 本教程案例是基于ModelArts Lite k8s Cluster运行的,需要购买并开通k8s Cluster资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训
表2 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 本教程案例是基于ModelArts Lite k8s Cluster运行的,需要购买并开通k8s Cluster资源。 准备代码 准备AscendSpeed训练代码、分词器Tokenizer和推理代码。 准备数据 准备训
表2 操作任务流程说明 阶段 任务 说明 准备工作 准备环境 本教程案例是基于ModelArts Lite k8s Cluster运行的,需要购买并开通k8s Cluster资源。 准备代码 准备AscendFactory训练代码、分词器Tokenizer和推理代码。 准备数据 准
--cache_requests true --trust_remote_code --output_path ./ 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
工作空间管理 查询工作空间详情 修改工作空间 删除工作空间 查询工作空间配额 修改工作空间配额 查询工作空间列表 创建工作空间
资源管理 查询OS的配置参数 查询插件模板 查询节点列表 批量删除节点 批量重启节点 查询事件列表 创建网络资源 查询网络资源列表 查询网络资源 删除网络资源 更新网络资源 查询资源实时利用率 创建资源池 查询资源池列表,可通过标签、资源池状态筛选查询资源池列表 查询资源池 删除资源池
准备工作 准备环境 准备代码 准备镜像 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909)
启动pod成功 执行如下命令查看pod日志,如果打印类似下图信息表示服务启动成功。 kubectl logs -f ${pod_name} 参数说明: ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 图2 启动服务成功
使用Prometheus查看Lite Cluster监控指标 Prometheus是一款开源监控工具,ModelArts支持Exporter功能,方便用户使用Prometheus等第三方监控系统获取ModelArts采集到的指标数据。 本章节主要介绍如何通过Prometheus查看Lite Cluster监控指标。
主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.909) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于Lite Cluster适配ModelLink PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
containerd 默认命名空间是 k8s.io。所以在导入镜像时需要指定命令空间为 k8s.io,否则使用 crictl images 无法查询到。以下命令可选其一进行镜像拉取: 使用 containerd 自带的工具 ctr 进行镜像拉取。 ctr -n k8s.io images pull
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite k8s Cluster上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为
推理场景介绍 方案概览 本方案介绍了在ModelArts的Lite k8s Cluster上使用昇腾计算资源开展常见开源大模型Llama、Qwen、ChatGLM、Yi、Baichuan等推理部署的详细过程。本方案利用适配昇腾平台的大模型推理服务框架vLLM和华为自研昇腾Snt9B硬件,为
ModelArts权限管理基本概念 ModelArts作为一个完备的AI开发平台,支持用户对其进行细粒度的权限配置,以达到精细化资源、权限管理之目的。这类特性在大型企业用户的使用场景下很常见,但对个人用户则显得复杂而意义不足,所以建议个人用户在使用ModelArts时,参照个人用
检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc
准备工作 准备环境 准备代码 准备镜像 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.911)
启动pod成功 执行如下命令查看pod日志,如果打印类似下图信息表示服务启动成功。 kubectl logs -f ${pod_name} 参数说明: ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 图2 启动服务成功