检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
具体添加代码内容以及位置,如下所示。 elif [[ -n "$VC_MAIN_HOSTS" ]]; then # 针对 Lite Cluster CCE 集群平台 # 获取 RANK_TABLE_FILE 的信息 RANKTABLE_RESULT=$(python $SHELL_FOLDER/
--backend:服务类型,支持tgi、vllm、mindspore、openai等。上面命令中使用vllm举例。 --host ${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。 --tokenizer:tokeniz
--backend:服务类型,支持tgi、vllm、mindspore、openai等。本文档使用的推理接口是vllm。 --host ${docker_ip}:服务部署的IP地址,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。 --tokenizer:tokeni
at等。本文档使用的推理接口是vllm,而llava多模态推理接口是openai-chat。 --host ${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:推理服务端口8080。 --tokenizer:tokeniz
Ascend: 8*ascend-snt9b表示Ascend 8卡。 购买并开通资源 如果使用Cluster资源,请先阅读k8s Cluster资源购买,熟悉集群资源开通流程,再开始操作购买Cluster资源。 当容器需要提供服务给多个用户,或者多个用户共享使用该容器时,应限制容器访问Openstack的管理地址(169
d 8卡。 购买并开通资源 如果使用Cluster资源,请先阅读Lite Cluster资源开通,熟悉集群资源开通流程,再开始操作购买k8s Cluster资源。 购买专属资源池注意事项 使用场景需要选择ModelArts Lite。 CCE集群已完成创建。 节点数量可自定义选择使用多少节点。
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.906)
主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.906) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.907) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc
检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64 docker-engine-selinux.noarch docker-runc
启动作业命令如下。首先会根据config.yaml创建pod,继而在pod容器内自动启动训练作业。 kubectl apply -f config.yaml 启动后,可通过以下命令获取所有已创建的pod信息。若pod已全部启动,则状态为:Running。 kubectl get pod -A -o wide
${node-path}:节点自定义目录,该目录下包含pod配置文件config.yaml。 ${model-path}:Step1 上传权重文件中上传的模型权重路径。 参考Step4 创建pod创建pod以用于后续进行模型量化 Step2 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型
#ppl精度测试脚本 执行如下命令进入容器。 kubectl exec -it {pod_name} bash ${pod_name}:pod名,例如图1${pod_name}为yourapp-87d9b5b46-c46bk。 精度评测切换conda环境,确保之前
containerd 默认命名空间是 k8s.io。所以在导入镜像时需要指定命令空间为 k8s.io,否则使用 crictl images 无法查询到。以下命令可选其一进行镜像拉取: 使用 containerd 自带的工具 ctr 进行镜像拉取。 ctr -n k8s.io images pull
mlu、ceval。 service_url:成功部署推理服务后的服务预测地址,示例:http://${docker_ip}:8080/generate。此处的${docker_ip}替换为宿主机实际的IP地址,端口号8080来自前面配置的服务端口。 few_shot:开启少量样
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.906)
├──vllm.py #构造vllm评测配置脚本名字 相关文档 和本文档配套的模型训练文档请参考《主流开源大模型基于Lite Cluster适配PyTorch训练指导》。 父主题: 准备工作
训练脚本说明 训练启动脚本说明和参数配置 训练的数据集预处理说明 训练中的权重转换说明 训练tokenizer文件说明 父主题: 主流开源大模型基于DevServer适配PyTorch NPU训练指导(6.3.906)
主流开源大模型基于DevServer适配LlamaFactory PyTorch NPU训练指导(6.3.910) 场景介绍 准备工作 执行训练任务 查看日志和性能 训练benchmark工具 训练脚本说明 附录:训练常见问题 父主题: LLM大语言模型训练推理