检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
可验证代码示例 数据准备 数据集发布 隐私规则防护 基本计算能力验证 基于MPC算法的高安全级别计算 统计型作业的差分隐私保护 父主题: 多方安全计算场景
创建数据 数据拥有方公司A创建和发布数据集。可供选择有两种数据资产类型:结构化数据集、非结构化数据集。创建数据集后,发布数据集,此时对空间内的所有代理可见。 父主题: 可信数据交换场景
申请使用数据 数据需求方公司B在自己的计算节点页面上可以查看数据目录,找到数据拥有方公司A创建并发布的数据。 图1 创建数据申请 对数据集单击“申请使用”,在弹窗中填写需要使用的字段和访问需求,保存后可以提交审批,由公司A审核。 访问需求包括: 访问截止时间:设置访问的时间限制,超过访问时间后
数据准备 乳腺癌数据集从UCI获取,该数据集只包含连续类型特征,因此对所有特征使用Scikit-Learn的StandardScaler进行了归一化。为了模拟横向联邦学习场景,将数据集随机划分为三个大小类似的部分:(1)xx医院的训练集;(2)其他机构的训练集;(3)独立的测试集,
审批数据申请 数据拥有方公司A登录进入计算节点页面。 在左侧导航树上选择“可信数据交换 > 数据申请”,打开数据申请页面。 在数据申请页面单击“我收到的”,查看供数方节点收到的申请列表。 数据来源为数据需求方公司B发送来的使用申请:申请交换的数据集、数据集字段(结构化数据才有该字段
隐私规则防护 使用TICS的隐私规则防护能力确保数据安全。 前提条件 完成数据集发布。 操作步骤 进入多方安全计算的作业执行界面,单击创建。 图1 创建作业 在作业界面中,按照示例一和示例二提供的案例和SQL语句进行作业测试。 图2 作业界面 示例一: 假设有人输入以下代码试图直接查询敏感数据
数据准备 数据准备 以下数据和表结构是根据场景进行模拟的数据,并非真实数据。 以下数据需要提前存导入到MySQL\Hive\Oracle等用户所属数据源中,TICS本身不会持有这些数据,这些数据会通过用户购买的计算节点进行加密计算,保障数据安全。 政府信息提供方的数据tax和support
准备数据 A方提供了待查询的用户ID数据,样例如下: blacklist_query.csv id 1914fd1aef9346e7a1b0a63c95aa918e 6b86b273ff34fce19d6b804eff5a3f57 66985617b4f74d14b4eceeaa25d61f5e
场景描述 有效的风险控制能够消灭或减少风险事件发生的各种可能性,或减少风险事件发生时造成的损失,对于企业具有重要意义。现阶段,企业级的单方风控体系已逐步建立,在机构内数据统一共享的基础上实现了覆盖业务前、中、后各环节的智能风控。然而,单方数据风控面临存在数据不全面、风控不及时的问题
发布数据集 企业A和企业B分别将自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 以企业A为例,数据集信息如下: 隐私求交场景需要将求交的字段设置为“非敏感”的唯一标识。 父主题: 隐私求交黑名单共享场景
创建实时隐匿查询作业 实时隐匿查询作业需要由数据查询方创建作业,企业A单击“作业管理 > 隐匿查询 > 实时隐匿查询”页面的创建按钮,填写相关信息,例如: 其中“不可区分度”即为实时隐匿查询的安全级别,不可区分度越高,则安全级别越高,但查询的速度会变慢,传输的数据量也会变大。 企业
发布数据集 企业B分别自己的csv数据文件上传到自己的计算节点上,通过“数据管理”模块创建各自的数据集,并单击“发布”。 企业B的数据集如下: 创建数据集后单击“发布”按钮即可将数据的元数据信息发布到tics空间侧,供其他合作方参考。 父主题: 外部数据共享
训练型横向联邦作业流程 联邦学习分为横向联邦及纵向联邦。相同行业间,特征一致,数据主体不同,采用横向联邦。不同行业间,数据主体一致,特征不同,采用纵向联邦。xx医院的应用场景为不同主体的相同特征建模,因此选用横向联邦。 创建训练型横向联邦学习作业。 图1 创建训练型横向联邦学习作业
基本计算能力验证 验证TICS的基础计算能力,以计算各企业在2021年的价值评分,用于评估信贷能力,其中的公式仅为简单的参考计算式。 操作步骤 执行如下的sql作业。 select c.id as `企业id`, 0.5 * a.tax_bal + 0.8 * b.supp_bal
查看求交结果 隐私求交作业执行完成后,企业A可以通过单击“历史作业 > 查看结果”看到隐私求交作业的运行结果,包括交集的大小和交集文件的路径。 打开obs到指定目录下查看,可以看到有两个结果文件,其中一个是交集记录的序号alignedIds.csv,另一个是交集记录的id alignedOriginalIds.csv
数据集发布 前提条件 完成数据准备工作。 操作步骤 进入TICS服务控制台。 在计算节点管理中,找到购买的计算节点,通过登录地址,进入计算节点控制台。 图1 前往计算节点 登录计算节点后,在下图所述位置新建连接器。 图2 新建连接器 输入正确的连接信息,建立数据源和计算节点之间的安全连接
评估型横向联邦作业流程 基于横向联邦作业的训练结果,可以进一步评估横向联邦模型,将训练好的模型用于预测。 选择对应训练型作业的“历史作业”按钮,获取最新作业的模型结果文件路径。 图1 查看模型结果文件的保存位置 前往工作节点上步骤1展示的路径,下载模型文件。由于Logistic Regression
使用TICS可信联邦学习进行联邦建模 场景描述 准备数据 发布数据集 创建可信联邦学习作业 选择数据 样本对齐 筛选特征 模型训练 模型评估 父主题: 纵向联邦建模场景
执行实时隐匿查询作业 企业A在发起实时隐匿查询前需要先执行数据初始化。 待实时预测作业初始化完成后,企业A可以通过页面单击“执行”试用发起查询。 例如查询id为“19581e27de7ced00ff1ce50b2047e7a567c76b1cbaebabe5ef03f7c3017bb5b7
样本对齐 单击右下角的下一步进入“样本对齐”页面,这一步是为了进行样本的碰撞,过滤出共有的数据交集,作为后续步骤的输入。企业A需要选择双方的样本对齐字段,并单击“对齐”按钮执行样本对齐。执行完成后会在下方展示对齐后的数据量及对齐结果路径。 父主题: 使用TICS可信联邦学习进行联邦建模