检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
Pro管理控制台,单击“视觉套件”卡片的“进入套件”。 进入视觉套件控制台。 在左侧导航栏选择“应用开发>工作台”。 默认进入“我的应用”页签。 在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 进入应用详情页。 在“开发版本列表”右侧,单击“开发新版本”。 进入新版本工作流的开发页面。 如
如果之前的版本还没开发完,会弹出“开发新版本”提示框,单击“确认”,进入新版本的开发页面。 图1 开发新版本 在新版本的应用开发页面,您可以基于上一版本的工作流配置,更新工作流开发的各个步骤,重新部署服务。 模型如何提升效果 检查是否存在训练数据过少的情况,建议每个标签的样本数不
检查是否存在训练数据过少的情况,建议每个标签的样本数不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
检查是否存在训练数据过少的情况,建议每个类别的图片量不少于100个,如果低于这个量级建议扩充。 检查不同标签的样本数是否均衡,建议不同标签的样本数量级相同,并尽量接近,如果有的类别数据量很高,有的类别数据量较低,会影响模型整体的识别效果。 选择适当的学习率和训练轮次。 通过详细评估中的错误识别示例,有针对性地扩充训练数据。
单击“数据集输入位置”右侧输入框,在弹出的“数据集输入位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 数据集输出位置 待新建的数据集存储至OBS的位置。 待新建的数据集有一个默认存储位置。如果需要修改数据集存储位置,请单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对
训练分类器 确定模板图片的参照字段和识别区后,多模板分类工作流在模板数量较多,或版式相似度较高的情况下,建议针对不同的模板上传对应的训练集数据,用于训练模板分类模型,使服务能够精准地分类多个模板图片,然后对多个模板图片进行文字识别和结构化提取。 前提条件 已在文字识别套件控制台选
登录ModelArts Pro管理控制台,单击“HiLens套件”卡片的“进入套件”。 进入HiLens套件控制台。 在左侧导航栏选择“应用开发>工作台”。 默认进入“我的应用”页签。 在“我的应用”页签下,选择已创建的应用,单击操作列的“查看”。 进入应用详情页,默认进入“应用开发”页签。
行业套件介绍 HiLens为端云协同AI应用开发平台,提供简单易用的开发框架、开箱即用的开发环境、丰富的AI技能市场和云上管理平台,帮助用户高效开发多模态AI技能,并将其快速部署到端侧计算设备。 预置可训练模板 HiLens套件提供可训练技能模板开发技能,无需代码,只需自主上传训
创建名称为“training-data-in”的文件夹用于存放训练数据集。 创建名称为“training-data-out”的文件夹用于存放输出的数据集。 创建OBS桶和文件夹的操作指导请参见创建桶和新建文件夹。为保证数据能正常访问,请务必保证创建的OBS桶与ModelArts Pro服务在同一区域。
待新建的数据集存储至OBS的位置。 单击“数据集输出位置”右侧的“修改”,在弹出的“数据集输出位置”对话框中,选择“OBS桶”和“文件夹”,然后单击“确定”。 选择步骤1:准备数据中提前创建好的输出数据集的OBS路径“mapro-nlp/data-out”。 勾选已上传的数据集。
零售商品识别工作流 自主构建高精度的商品识别算法,帮助提高商品新品上线效率,提升消费者体验。 热轧钢板表面缺陷检测工作流 支持自主上传热轧钢板表面图片数据,构建热轧钢板表面缺陷类型的检测模型,用于识别热轧钢板表面图片中的缺陷类型。 云状识别工作流 支持上传多种云状图数据,构建云状的识别模型,用于高
自然语言处理套件提供了通用文本分类工作流,您可以通过预置的工作流,自主上传训练数据,训练高精度的文本预测分类模型,适配不同行业场景的业务数据,快速获得定制服务。 图1 使用预置工作流开发应用 表1 使用预置工作流开发应用流程 流程 说明 详细指导 选择自然语言处理套件 根据您的实际使用需求选择自然语言处理套
相是指成分和组织均匀统一的物质部分,金属材料中,一般除了基体相外,还会存在许多的第二相。而第二相对整个金属材料的影响也是巨大的。在钢铁或其下游企业,常需要对钢铁显微成像的金相图片第二相面积含量进行测定。ModelArts Pro提供第二相面积含量测定工作流,能快速准确的返回第二相面积含量测定结果。