检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
据用户的长短期行为表现出来的兴趣进行学习与训练,结合长短期兴趣进行个性化推荐。 关联推荐主要应用于固定的物品的关联推荐,根据已关联的物品对相关的内容和行为进行挖掘,网状匹配相关联的物品,进行有关联度的推荐。 热门推荐主要应用于当前用户浏览最多的物品内容,如实时搜索量前几的新闻或者物品。
Error 重复的key值 请检查key值是否重复。 400 RES.3410 Basic Error 不支持的key值({0}) 请检查的key值是否负荷文档要求。 400 RES.3411 Basic Error 工作空间({0})下的资源未清空 请清空该工作空间下的资源。 400
"xxxx"; // 配置上传的数据 PutRecordsRequest putRecordsRequest = new PutRecordsRequest(); putRecordsRequest.setStreamId(streamId); List<PutRecordsRequestEntry>
"xxxx"; // 配置上传的数据 PutRecordsRequest putRecordsRequest = new PutRecordsRequest(); putRecordsRequest.setStreamId(streamId); List<PutRecordsRequestEntry>
在“test-data”文件夹下,将behavior.txt中的每条数据的actionTime字段的值修改到当前时间附近。将item.txt中的每条数据的publishTime字段的值修改到当前时间附近,将item.txt中的每条数据的expireTime字段的值修改成大于当前时间的值,避免数据因为过期被过滤掉。
展程序(也可使用其它支持发送post请求的软件)。 打开Postman,如图4所示。 图4 Postman界面 在Postman界面填写参数。 选择POST任务,将通过获取预测接口获取的调用地址复制到POST后面的方框。Headers页签的“KEY”值填写为“X-Auth-Tok
阈值:阈值是用来衡量用户行为有效性的标准, 当数据源的actionMeasure的值大于阈值时, 当前用户行为有效。 去重:您可以单击勾选,根据用户对行为记录去重。 指标设置 指标名称:请您定义评估的指标名称。 指标公式:用户指定自定义指标公式,如:A/(A+B),参数A、B代表自定义参数的参数别名。只支持+、-、*、/。
序相关得分的权重值。 融合方式:当同时选择点击率预估和综合排序进行重排序时,汇总分数时的统计方式。根据数值属性的大小顺序(ORDER)或者绝对值进行权重累加(ABS)统计。 高级类型选项 打散 打散是指推荐的结果集中根据客体的选择的字符串类型的属性进行打散,避免推荐结果集过于集中,增加推荐结果的新颖性。
数值稳定常量:为保证数值稳定而设置的一个微小常量。默认1e-8。 adagrad:自适应梯度算法 对每个不同的参数调整不同的学习率,对频繁变化的参数以更小的步长进行更新,而稀疏的参数以更大的步长进行更新。 学习率:优化算法的参数,决定优化器在最优方向上前进步长的参数。默认0.001。 初
单击目标服务名称前方的查看预测接口,通过单击预测接口右侧的,复制接口地址,调用服务。 图2 获取预测接口 通过在线服务详情页面获取接口 登录RES管理控制台,在左侧菜单栏中选择“在线服务”,进入服务列表页面。 单击目标服务名称进入服务详情页面,通过单击预测接口右侧的,复制接口地址,调用服务。
增加用户特征。单击特征后方的删除不需要的用户特征。 物品特征 列表中展示抽取的物品特征和参数类型,此特征会额外应用于所选字段的功能。您可以根据业务需求单击增加物品特征。单击特征后方的删除不需要的物品特征。 您可以从“应用于”右侧的下拉选项中设置该数据的使用维度是“兴趣属性”或者“关键词提取”。其中:
座两层的小木屋,和这里的大部分木质吊脚楼一样,小木屋依山而建。但这座木屋又很“特别”,它有一个“山东哥哥助学工作站”的名字。这座木屋,凝聚了“山东哥哥”与贵州山区儿童之间的情谊,也见证了一位名叫隋刚的淄博“80后”小伙18年来的坚守。", "绝大多数用户的需求往往
数据源的数据格式和近线数据导入的格式要求一致,包括用户数据、物品数据和行为数据。 用户数据 用户数据包括数据源中的“用户属性表”和用于近线计算的“用户画像”数据。用户数据记录用户的属性信息,例如地域、爱好等。 物品数据 物品数据包括数据源中的“物品属性表”和用于近线计算的“物品画
创建离线数据源 在使用RES之前,首先您需要创建一个数据源,后续的操作,如修改数据源、创建自定义推荐,都是基于您创建的数据源进行的。 前提条件 已创建用于存储数据的OBS桶及文件夹,并且数据存储的OBS桶与RES在同一区域。 需要使用的数据已上传至OBS。 创建数据源 登录RES管理控制台
离线数据和近线实时数据如何配合使用? 在推荐系统初始化阶段,需要用户提供批量的离线数据源并按照推荐系统要求的数据格式上传至OBS,完成数据的检测和导入。 近线实时数据源推荐使用RES SDK上传,此操作所有的数据更新都是实时生效的。 父主题: 数据源
Service,简称OBS)进行数据源的存储。因此,在使用RES之前您需要开通OBS服务并创建桶,然后在OBS桶中上传用户数据用于推荐作业的计算。 需要存放在OBS桶中的数据包括: 离线数据源:包含用户类数据,物品类数据,行为数据以及推荐候选列表。 人工推荐策略的候选集(可选):您可以将人工编辑推荐结果的列表c
用户需要自己手工创建整理这些表并存储到OBS上。 每张表的表结构必须符合推荐系统的要求,列名和字段类型需要和规范中保持一致(参考下面的表结构说明)。 每张表中填充的数据,必须符合推荐引擎的要求。 对于业务数据中无法提供的字段可以填NULL。 用户属性表 用户属性表记录用户的属性信息,例如地域、爱好等,属性名和属性值成对出现。
批处理、近线流处理、在线实时处理的三种数据处理方式,提供完备的一站式推荐平台,可快速设置运营规则进行AB测试。 功能优势: 全开放推荐流程,用户根据业务自定义推荐流程。 特征工程,特征处理多样化,支持自定义特征散列等。 丰富的推荐策略,提供丰富的召回、过滤、排序算子。 运营助手,
itemType String 物品的类型。 是 itemId String 对应行为发生的对象的值。如果是和物品发生关系,则是物品的id(itemId)的值。 是 actionType String 行为类型,包括正向行为和负向行为。下面为预置的行为类型和对应的权重,权重有默认分数,默认
品ID的形式在OBS上存储。 操作步骤 登录OBS管理控制台,创建OBS桶。例如,创建名称为“obs-res”的OBS桶。 创建桶的区域需要与RES所在的区域一致。例如:当前RES在华北-北京一区域,在对象存储服务创建桶时,请选择华北-北京一。 通过OBS创建用于存放数据的文件夹