检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
开发用于预置框架训练的代码 当您使用ModelArts Stanard提供的预置框架创建算法时,您需要提前完成算法的代码开发。本章详细介绍如何改造本地代码以适配ModelArts上的训练。 创建算法时,您需要在创建页面提供代码目录路径、代码目录路径中的启动文件、训练输入路径参数和
预置框架启动文件的启动流程说明 ModelArts Standard训练服务预置了多种AI框架,并对不同的框架提供了针对性适配,用户在使用这些预置框架进行模型训练时,训练的启动命令也需要做相应适配。 本章节详细介绍基于不同的预置框架创建训练作业时,如何修改训练的启动文件。 Asc
GPU A系列裸金属服务器如何进行RoCE性能带宽测试? 场景描述 本文主要指导如何在GPU A系列裸金属服务器上测试RoCE性能带宽。 前提条件 GPU A系列裸金属服务器已经安装了IB驱动。(网卡设备名称可以使用ibstatus或者ibstat获取。华为云Ant8裸金属服务器使用Ubuntu20
上述命令中:modelFile指定生成的mindir模型文件;device指定运行推理的设备。其他用法参考benchmark文档。 测试结果如下所示: 图1 测试结果 父主题: 性能调优
各个模型深度学习训练加速框架的选择 LlamaFactory框架使用两种训练框架: DeepSpeed和Accelerate都是针对深度学习训练加速的工具,但是它们的实现方式和应用场景有所不同。 DeepSpeed是一种深度学习加速框架,主要针对大规模模型和大规模数据集的训练。D
以PyTorch框架创建训练作业(新版训练) 本节通过调用一系列API,以训练模型为例介绍ModelArts API的使用流程。 概述 使用PyTorch框架创建训练作业的流程如下: 调用认证鉴权接口获取用户Token,在后续的请求中需要将Token放到请求消息头中作为认证。 调
性能调优 性能测试 benchmark工具也可用于性能测试,其主要的测试指标为模型单次前向推理的耗时。在性能测试任务中,与精度测试不同,并不需要用户指定对应的输入(inDataFile)和输出的标杆数据(benchmarkDataFile),benchmark工具会随机生成一个输
使用预置框架构建自定义镜像原理介绍 如果先前基于预置框架且通过指定代码目录和启动文件的方式来创建的训练作业;但是随着业务逻辑的逐渐复杂,您期望可以基于预置框架修改或增加一些软件依赖的时候,可以使用预置框架构建自定义镜像,即在创建训练作业页面选择预置框架名称后,在预置框架版本下拉列表中选择“自定义”。
GPU A系列裸金属服务器节点内如何进行NVLINK带宽性能测试方法? 场景描述 本文指导如何进行节点内NVLINK带宽性能测试,适用的环境为:Ant8或者Ant1 GPU裸金属服务器, 且服务器中已经安装相关GPU驱动软件,以及Pytorch2.0。 GPU A系列裸金属服务器
1-8B模型框架,创建并部署一个模型服务,实现对话问答。通过学习本案例,您可以快速了解如何在MaaS服务上的创建和部署模型。更多MaaS服务的使用指导请参见用户指南。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。 步骤1:创建我的模型:使用模型广场的模型框架创建自定义模型。
CCl Test,测试节点GPU状态,并且测试多个节点间的通信速度。 操作步骤 单击资源池名称,进入资源池详情。 单击左侧“AI组件管理 > AI诊断”。 单击“诊断”,选择“日志上传路径”和NCCL Test节点,其余参数可保持默认值或根据实际需求修改。 测试使用的最大数据:取值范围[1
查询超参搜索某个trial的结果 获取超参敏感度分析结果 获取某个超参敏感度分析图像的路径 提前终止自动化搜索作业的某个trial 获取自动化搜索作业yaml模板的信息 获取自动化搜索作业yaml模板的内容 创建训练作业标签 删除训练作业标签 查询训练作业标签 获取训练作业事件列表
-Deepspeed框架训练GPT-2(分别进行单机单卡和单机多卡训练)。 训练完成后给出自动式生成内容,和交互式对话框模式。 背景信息 Megatron-Deepspeed Megatron-Deepspeed是一个基于PyTorch的深度学习模型训练框架。它结合了两个强大的工
针对转换的模型运行时应用层适配。 数据预处理。 模型编排。 模型裁剪。 精度校验。 精度对比误差统计工具。 自动化精度对比工具。 网络结构可视化工具。 性能调优。 性能测试。 性能调优三板斧。 性能分析与诊断。 迁移测试报告。 推理迁移验收表。 ModelArts开发环境 ModelArts作为华为云上
适配和改造的主要工作项如下: 图1 改造工作项 针对不同框架的镜像,可能还需要做额外的适配工作,具体差异请见对应框架的操作步骤。 TFServing框架迁移操作步骤 Triton框架迁移操作步骤 TFServing框架迁移操作步骤 增加用户ma-user。 基于原生"tensorflow/serving:2
threshold (25G)”,镜像创建失败。 原因分析 镜像保存本质是通过在资源集群节点上的agent中进行了docker commit,再配合一系列自动化操作来上传和更新管理数据等。每次Commit都会带来额外的一些开销,层数越多镜像越大,如果多次保存后就会有存储显示没那么大,但是镜像已经很
Standard模型部署 ModelArts Standard提供模型、服务管理能力,支持多厂商多框架多功能的镜像和模型统一纳管。 通常AI模型部署和规模化落地非常复杂。 例如,智慧交通项目中,在获得训练好的模型后,需要部署到云、边、端多种场景。如果在端侧部署,需要一次性部署到不
发用于部署模型或应用的流水线工具,核心是将完整的机器学习任务拆分为多步骤工作流,每个步骤都是一个可管理的组件,可以单独开发、优化、配置和自动化。Workflow有助于标准化机器学习模型生成流程,使团队能够大规模执行AI任务,并提高模型生成的效率。 ModelArts Workfl
diffusers_sdxl_controlnet_train.sh 训练执行成功如下图所示。 图1 训练执行成功 父主题: SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.907)
diffusers_sdxl_controlnet_train.sh 训练执行成功如下图所示。 图1 训练执行成功 父主题: SD1.5&SDXL Diffusers框架基于DevServer适配PyTorch NPU训练指导(6.3.908)