获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.908-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表2所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.5.901-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
针对转换的模型运行时应用层适配。 数据预处理。 模型编排。 模型裁剪。 精度校验。 精度对比误差统计工具。 自动化精度对比工具。 网络结构可视化工具。 性能调优。 性能测试。 性能调优三板斧。 性能分析与诊断。 迁移测试报告。 推理迁移验收表。 ModelArts开发环境 ModelArts作为华为云上
准备代码 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.909-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码
准备代码 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.910-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码
准备代码 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表1所示。 表1 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.3.911-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的推理部署代码和推理评测代码
v1.25及以上 软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-3rdLLM-6.3.905-20240611214128.zip 三方大模型训练和推理代码包 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的软件信息,说明您没有
最优性能的配置。 目前仅支持SFT指令监督微调训练阶段。 准备工作 参考benchmark-准备工作,开始训练测试,具体步骤参考训练性能测试或训练精度测试,根据实际情况决定。 父主题: 训练benchmark工具
名称 版本 driver 23.0.6 PyTorch pytorch_2.1.0 获取软件和镜像 表2 获取软件和镜像 分类 名称 获取路径 插件代码包 AscendCloud-6.5.901软件包中的AscendCloud-AIGC-6.5.901-xxx.zip 文件名中的xx
1.0 FrameworkPTAdapter:6.0.RC2 如果用到CCE,版本要求是CCE Turbo v1.25及以上 软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-6.3.906-xxx.zip 包含 三方大模型训练和推理代码包:AscendCloud-LLM
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
ModelArts平台提供了Tensorflow,PyTorch,MindSpore等常用深度学习任务的基础镜像,镜像里已经安装好运行任务所需软件。当基础镜像里的软件无法满足您的程序运行需求时,您可以基于这些基础镜像制作一个新的镜像并进行训练。 训练基础镜像列表 ModelArts中预置的训练基础镜像如下表所示。
本教程中用到的模型软件包如下表所示,请提前准备好。 获取模型软件包 本方案支持的模型对应的软件和依赖包获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6.3.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。
常用预置包,基于标准的Conda环境,预置了常用的AI引擎,例如PyTorch、MindSpore;常用的数据分析软件包,例如Pandas、Numpy等;常用的工具软件,例如CUDA、cuDNN等,满足AI开发常用需求。 预置Conda环境:每个预置镜像都会创建一个相对应的Cond
volcano job形式下发lite池集群。训练测试用例使用NLP的bert模型,详细代码和指导可参考Bert。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_pretrain_mindspore:v1,已经把测试数据和代码打进镜像中。 docker pull swr
-c45ac6b cann_8.0.rc3 软件配套版本 本方案支持的软件配套版本和依赖包获取地址如表4所示。 表4 软件配套版本和获取地址 软件名称 说明 下载地址 AscendCloud-6.5.912-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中
PyTorch:pytorch_2.1.0 MindSpore lite: 2.3.0 FrameworkPTAdapter:6.0.RC3 - 软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-6.3.910-xxx.zip 包含 三方大模型训练和推理代码包:AscendCloud-LLM
PyTorch:pytorch_2.1.0 MindSpore lite: 2.3.0 FrameworkPTAdapter:6.0.RC3 软件包获取地址 软件包名称 软件包说明 获取地址 AscendCloud-6.3.911-xxx.zip 包含 三方大模型训练和推理代码包:AscendCloud-LLM
您即将访问非华为云网站,请注意账号财产安全