检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
联邦分析作业管理 查询联邦分析作业列表 父主题: 空间API
隐私求交 概述 创建隐私求交作业 执行隐私求交作业 查看作业计算过程和作业报告 删除隐私求交作业
隐私求交黑名单共享场景 场景描述 准备数据 发布数据集 创建并运行隐私求交作业 查看求交结果 父主题: 使用场景
多方安全计算作业 创建作业 执行作业 查看作业计算过程和作业报告 删除作业 审批模式作业
ICS本身不会持有这些数据,这些数据会通过用户购买的计算节点进行加密计算,保障数据安全。 政府信息提供方的数据tax和support,在用户计算节点agent_gov上发布。 能源信息提供方的数据power,在用户计算节点agent_power上发布。 表1 企业税收和资助金情况表tax
可信联邦学习作业 概述 创建横向训练型作业 横向联邦训练作业对接MA 创建横向评估型作业 创建纵向联邦学习作业 执行作业 查看作业计算过程和作业报告 删除作业 安全沙箱机制
到目标数据集,可查看该数据集是否已参与其他的预处理作业。 目标数据集需要对所选字段的分布类型进行严格定义。处理评估/预测数据前建议先使用训练数据进行预处理,以确保当数据处理达到目标需求。 图4 创建数据预处理作业 单击“保存”后,可查看数据预处理作业。 图5 查看数据预处理作业 父主题:
使用场景 多方安全计算场景 纵向联邦建模场景 隐私求交黑名单共享场景 实时隐匿查询场景 可信数据交换场景 横向联邦学习场景
联邦学习作业管理 执行ID选取截断 执行纵向联邦分箱和IV计算作业 执行样本对齐 查询样本对齐结果 父主题: 计算节点API
删除多方安全计算作业 用户登录计算节点页面。 在左侧导航树上依次选择“作业管理 > 多方安全计算”,打开多方安全计算页面。 在多方安全计算页面查找待删除的作业,单击“删除”。 删除操作无法撤销,请谨慎操作。 图1 删除作业 父主题: 多方安全计算作业
多方安全计算作业管理 新建多方安全计算作业 保存多方安全计算作业 获取多方安全计算作业详情 查询多方安全计算作业列表 多方安全计算作业审批 多方安全计算作业取消审批 执行多方安全计算作业 删除多方安全计算作业 父主题: 计算节点API
删除批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面批量预测,查找待删除的作业,单击“删除”。 删除操作无法撤销,请谨慎操作。 图1 删除作业 父主题: 批量预测
用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测tab页,查找待删除的作业,单击“删除”。如果作业处于“部署完成“状态,需要单击“停止部署”后,方可删除。 删除操作无法撤销,请谨慎操作。 图1 删除作业
删除可信联邦学习作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“可信联邦学习”页面,查找待删除的作业,单击“删除”。 删除操作无法撤销,请谨慎操作。 图1 删除作业 父主题: 可信联邦学习作业
删除隐私求交作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 隐私求交”,打开隐私求交作业列表页面。 在隐私求交作业列表页面查找待删除的作业,单击“删除”。 删除操作无法撤销,请谨慎操作。 图1 删除作业 父主题: 隐私求交
执行多方安全计算作业 用户登录计算节点页面。 在左侧导航树上依次选择“作业管理 > 多方安全计算”,打开多方安全计算页面。 在多方安全计算页面查找待执行的作业,单击“执行”。如果SQL中存在作业变量,需要在执行时填入实际值。 图1 执行作业 父主题: 多方安全计算作业
能。参与方填写连接信息来创建对应类型的连接器,并通过这些连接器访问到各类型资源的结构化信息。当前支持MRS服务(Hive)、本地数据集、RDS数据集、DWS数据集、Oracle数据集、Mysql数据集,后续会支持更多华为云服务及原生服务的资源访问功能。连接信息中的敏感部分不会离开参与方侧。
概述 隐私求交是可信智能计算服务提供的安全获取参与双方所持数据交集的功能。它允许参与计算的双方,在不获取对方任何额外信息(除交集外的其它信息)的基础上,得到双方持有数据的交集。 单独使用场景 数据持有双方为获取己方与对方数据的交集,在不暴露其它数据的情况下,将需要获取交集的那一部
建多方安全计算作业,根据合作方已提供的数据,编写相关sql作业并获取您所需要的分析结果,同时能够在作业运行保护数据使用方的数据查询和搜索条件,避免因查询和搜索请求造成的数据泄露。 可信联邦学习 可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。
可选)等一系列操作后,可以根据自身的业务需求使用TICS提供的常用实践。 表1 常用最佳实践 实践 描述 基于TICS实现端到端的企业积分查询作业 本最佳实践提供了通过统一制定隐私规则,使用TICS进行安全计算,避免真实数据被窃取的使用案例。 父主题: 快速入门