检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
由于ModelArts产品的持续更新和迭代,第三方案例中的界面和步骤可能因时效性而与最新产品有所差异,仅供学习和参考。 表5 第三方案例列表 分类 文章名称 作者 Standard自动学习 2步打通ModelArts和Astro实现AI应用落地 胡琦 Standard开发环境 想不想让一张静态的照片动起来
-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6
-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6
-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6
-20-21-19”。难例原因ID可选值如下: 0:未识别出任何目标物体。 1:置信度偏低。 2:基于训练数据集的聚类结果和预测结果不一致。 3:预测结果和训练集同类别数据差异较大。 4:连续多张相似图片的预测结果不一致。 5:图像的分辨率与训练数据集的特征分布存在较大偏移。 6
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。若未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 若用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
训练启动脚本说明和参数配置 本代码包中集成了不同模型(包括llama2、llama3、Qwen、Qwen1.5 ......)的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。
训练启动脚本说明和参数配置 本代码包中集成了不同模型的训练脚本,并可通过不同模型中的训练脚本一键式运行。训练脚本可判断是否完成预处理后的数据和权重转换的模型。如果未完成,则执行脚本,自动完成数据预处理和权重转换的过程。 如果用户进行自定义数据集预处理以及权重转换,可通过编辑 1_preprocess_data
bool或者Placeholder label_task_type 标注任务的类型。当输入是数据集时,该字段必填,用来指定数据集版本的标注场景。输入是标注任务时该字段不用填写。 否 LabelTaskTypeEnum 支持以下几种类型: IMAGE_CLASSIFICATION (图像分类) OBJECT_DETECTION
件为空。配置文件是一个YAML格式的文件,里面的参数就是命令的option参数。此外,如果用户在命令行中同时指定YAML_FILE配置文件和option参数,命令行中指定的option参数的值将会覆盖配置文件相同的值。 $ma-cli ma-job submit -h Usage:
对应支持的镜像和版本有所不同。 表3 Notebook支持的镜像 镜像名称 镜像描述 适配芯片 支持SSH远程开发访问 支持在线JupyterLab访问 pytorch1.8-cuda10.2-cudnn7-ubuntu18.04 CPU、GPU通用算法开发和训练基础镜像,预置AI引擎PyTorch1
5-ubuntu18.04 CPU算法开发和训练基础镜像,包含可以图形化机器学习算法开发和调测MLStudio工具,并预置PySpark2.4.5 CPU 否 是 mindspore1.2.0-cuda10.1-cudnn7-ubuntu18.04 GPU算法开发和训练基础镜像,预置AI引擎MindSpore-GPU
dataset success ------------') 映射数据集路径到OBS 由于最终JSON体中需要填写的是图片文件的真实路径,也就是OBS对应的路径,所以在复制到本地做完分析和评估操作后,需要将原来的本地数据集路径映射到OBS路径,然后将新的list送入analysis接口。
SDK构建自定义模型,需要了解2个核心基础类“PretrainedModel”和“PretrainedConfig”之间的交互。 “PretrainedConfig”:预训练模型的配置基类 提供模型配置的通用属性和两个主要方法,用于序列化和反序列化配置文件。 PretrainedConfig.from_pretrained(dir)