检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
其中,before文件夹:包含变化前的图片,每幅图片需与变化后的图片同名、同尺寸。 after文件夹:包含变化后的图片,每幅图片需与变化前的图片同名、同尺寸。 label文件夹:包含与变化前和变化后图片同名、同尺寸的PNG文件。每个像素值代表该位置对应的类别信息,类别应是连续的且从0开始。 视频分类 图片 导入
数据提取 图文提取 提取图文压缩包中的JSON文本和图片,并对图片进行结构化解析(BASE64编码)。 数据过滤 图片元数据过滤 基于图片存储大小、宽高比属性进行图片/图文数据加工。 图文文本长度过滤 过滤文本长度不在“文本长度范围”内的图文对。一个中文汉字或一个英文字母,文本长度均计数为1。
加工图片类数据集 加工图片类数据集任务前,请先完成数据导入操作,具体步骤请参见导入数据至盘古平台。 创建图片类数据集加工任务 创建图片类数据集加工任务步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“数据工程
加工图片类数据集 加工图片类数据集 标注图片类数据集 配比图片类数据集 父主题: 加工数据集
标注图片类数据集 创建图片类数据集标注任务 标注图片类数据集任务前,请先完成数据导入操作,具体步骤请参见导入数据至盘古平台。 数据标注功能支持创建标注任务、标注数据集(标注作业)、审核标注后的数据集(审核作业)与管理标注任务(任务管理)。其中,不同角色权限支持的功能及展示的前端界面略有差异,详见表1。
识别视频中是否包含水印。 字幕识别 识别视频中是否包含字幕。 Logo识别 识别视频中是否包含Logo。 视频黑边识别 识别视频中是否包含黑边。 密集文字识别 识别视频中是否包含密集文字,达到密集文字面积占比的视频则为含密集文字视频,一般裁剪面积占比≥7%为密集文字视频。 父主题: 数据集加工算子介绍
配比图片类数据集 数据配比是将多个数据集按照特定比例关系组合并发布为“发布数据集”的过程,确保数据的多样性、平衡性和代表性。 如果单个数据集已满足您的需求,可跳过此章节至发布图片类数据集。 创建图片类数据集配比任务 创建图片类数据集配比任务步骤如下: 登录ModelArts St
发布图片类数据集 数据发布是将数据集发布为特定格式的“发布数据集”的过程,用于后续模型训练等操作。 图片类数据集支持发布的格式为: 标准格式:如图1,平台默认的格式。该格式的数据集可发布到资产中,但下游模型开发不可见。 图1 图片类数据集标准格式示例 盘古格式:如图2,训练盘古大
算子分类 算子名称 算子描述 数据提取 WORD内容提取 从Word文档中提取文字,并保留原文档的目录、标题和正文等结构,不保留图片、表格、公式、页眉、页脚。 TXT内容提取 从TXT文件中提取所有文本内容。 CSV内容提取 从CSV文件中读取所有文本内容,并按该文件内容类型模板KEY值生成匹配的JSON格式数据。
Studio大模型开发平台针对图片类数据集预设了一套基础评估标准,涵盖了图像清晰度、分辨率、标签准确性、图像一致性等多个质量维度,用户可以直接使用该标准或在该标准的基础上创建评估标准。 若您希望使用平台预置的评估标准,可跳过此章节至创建图片类数据集评估任务。 创建图片类数据集评估标准步骤如下:
发布图片类数据集 评估图片类数据集 发布图片类数据集 父主题: 发布数据集
大模型(LLM)通过对海量公开数据(如互联网和书籍等语料)进行大规模无监督预训练,具备了强大的语言理解、生成、意图识别和逻辑推理能力。这使得大模型在智能问答系统中表现出色:用户输入问题后,大模型依靠其强大的意图理解能力和从大规模预训练语料及通用SFT中获得的知识,生成准确而全面的回答。然而,依赖通用大模型自
评估工作流响应的准确性:从工作流响应准确性维度看,本实践可以评估意图识别节点响应意图的准确性。本实践的意图识别节点包含文本翻译意图和其他意图。 文本翻译意图:当用户请求翻译时,意图识别节点的关键任务是准确判断用户翻译的需求,执行翻译节点分支,并给出正确的翻译结果。 如图1,当用户输入翻译
是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。 数据行数不小于10行,不大于50行。 数据不允许相同表头,表头数量小于20个。 数据单条文本长度不超过1000。 创建数据集时会对相关限制条件进行校验。 数据参考格式如下: 图1 数据参考格式
为什么其他大模型适用的提示词在盘古大模型上效果不佳? 更多 技术专题 技术、观点、课程专题呈现 云图说 通过云图说,带您了解华为云 OCR基础课程 介绍文字识别服务的产品、技术指导和使用指南 OCR系列介绍 文字识别服务在计算机视觉的重要性、基本技术和最新进展 智能客服 您好!我是有问必答知识渊博
结束节点:结束节点是工作流的最终节点,用于定义整个工作流的输出信息。 大模型节点:用于在工作流中引入大模型能力。 意图识别节点:用于根据用户的输入进行意图分类并导向后续不同的处理流程。 提问器节点:提供了在对话过程中向用户收集更多信息的能力。 插件节点:用于引入API插件,根
意图识别节点:该节点对用户输入的文本进行分类和分析,识别出用户的意图。主要包括以下两种意图: 文本翻译意图:系统识别出用户希望进行文本翻译的请求。 其他意图:包括普通对话、问答、或其他功能请求。该分支最终会引导文本到大模型节点进行处理。 提问器节点:当意图识别为“文本翻译”意图时,工作流将进入提问器节点。
在金融场景中,客户日常业务依赖大量报表数据来支持精细化运营,但手工定制开发往往耗费大量人力。因此,希望借助大模型消除语义歧义性,识别用户查询意图,并直接生成支持下游操作的结构化JSON信息。大模型的NL2JSON能力可以从自然语言输入抽取关键信息并转换为JSON格式输出,以供下游操作,从而满足该场景下客户需求。 金
鼠标拖动左侧“提问器”节点至编排页面,并连接“意图识别”的“文本翻译”意图节点与该节点,单击该节点进行配置。 在“参数配置”中,配置输入参数,如图9。 图9 配置输入参数 配置输出参数。如图10,单击“引用插件 > 个人插件”,选择创建多语言文本翻译插件中创建好的插件,单击“确定”,将自动导入插件参数。 图10 引用插件参数
容。默认关闭。 图2 大模型节点配置示例 节点配置完成后,单击“确定”。 连接大模型节点和其他节点。 意图识别节点配置说明 意图识别节点通过大模型推理分析用户输入,匹配预定义的意图关键字类别,并根据识别结果引导至相应的处理流程,通常位于工作流的前置位置。 意图识别节点为可选节点,若无需配置,可跳过该步骤。