检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
le的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。
= os.path.join(base_local_path, "train/") # 这里提前将训练脚本放在了obs中,实际上训练脚本可以是任何来源,只要能够放到Notebook里边就行 session.obs.download_file(os.path.join(base_bucket_path
预训练脚本llama2.sh,存放在“xxx-Ascend/llm_train/AscendSpeed/scripts/llama2”目录下。训练前,可以根据实际需要修改超参配置。 表1 预训练超参配置 参数 示例值 参数说明 DATASET_PATH /home/ma-user/ws/pr
填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 图1 创建数据处理基本信息 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。 设置数据
duration=1)] # (可选)设置在线服务运行时间 ) 参数“model_id”代表将部署成在线服务的模型。“model_id”可以通过查询模型列表或者ModelArts管理控制台获取。 部署服务到专属资源池 from modelarts.config.model_config
缓存文件与实际推理不匹配而报错。 什么是CANN-GRAPH CANNGraph图模式是一种Capture-Replay架构的Host图,可以有效消除Host瓶颈,支持模型输入动态shape,无需分档构图,构图较快。未设置INFER_MODE环境变量时,即默认模式下,部分模型会默
“数据增强”表示通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{projec
dict required 参数是否必填标记。 默认required=True。 Delay参数不能设required=False。 运行时前端可以不填此参数。 否 bool 使用案例 int类型参数 from modelarts import workflow as wf wf.Pl
查询作业排列顺序的指标。默认使用create_time排序。 order 否 String 查询作业排列顺序,默认为“desc”,降序排序。也可以选择对应的“asc”,升序排序。 缺省值:desc 枚举值: asc:升序 desc:降序 group_by 否 String 查询作业要搜索的分组条件。
如果需要使用本文档中训练后的权重文件进行推理,请参考此章节合并训练权重文件并转换为Huggingface格式。 如果无推理任务或者使用开源Huggingface权重文件推理,都可以忽略此章节。 下一步的推理任务请参考文档《开源大模型基于DevServer的推理通用指导》。 将多个权重文件合并为一个文件并转换格式 该场
缓存文件与实际推理不匹配而报错。 什么是CANN-GRAPH CANNGraph图模式是一种Capture-Replay架构的Host图,可以有效消除Host瓶颈,支持模型输入动态shape,无需分档构图,构图较快。未设置INFER_MODE环境变量时,即默认模式下,部分模型会默
调用成功时无此字段。 job_total_count Integer 查询到的用户创建作业总数。 job_count_limit Integer 用户还可以创建训练作业的数量。 jobs jobs结构数组 训练作业的属性列表,具体请参见表4。 quotas Integer 训练作业的运行数量上限。
景(4台8卡Vnt1),存储方案推荐使用“SFS(存放数据)+普通OBS桶(存放代码)”,采用分布式训练。 当使用SFS+OBS的存储方案可以实现存储加速,该方案的端到端实践案例请参见面向AI场景使用OBS+SFS Turbo的存储加速实践。 表1 不同场景所需服务及购买推荐 场景
调用成功时无此字段。 job_total_count Integer 查询的可视化作业总数。 job_count_limit Integer 用户还可以创建可视化作业的数量。 jobs jobs结构数组 可视化作业的属性列表,具体请参见表4。 quotas Integer 可视化作业的运行数量上限。
le的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。
|——megatron/ # 注意:该文件夹从Megatron-LM中复制得到 |——... 您可以在Notebook中导入完代码之后,在Notebook运行sh scripts/install.sh命令提前下载完整代码包和安装依赖包,然
le的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。
如果需要使用本文档中训练后的权重文件进行推理,请参考此章节合并训练权重文件并转换为Huggingface格式。 如果无推理任务或者使用开源Huggingface权重文件推理,都可以忽略此章节。 下一步的推理任务请参考文档《开源大模型基于DevServer的推理通用指导》。 将多机多卡训练的权重文件合并到一个节点 如果
|——megatron/ # 注意:该文件夹从Megatron-LM中复制得到 |——... 您可以在Notebook中导入完代码之后,在Notebook运行sh scripts/install.sh命令提前下载完整代码包和安装依赖包,然
启动脚本,建立线程池发送请求,并汇总结果 ├── service_predict.py # 发送请求的服务 执行精度测试启动脚本eval_test.py,具体操作命令如下,可以根据参数说明修改参数。 python eval_test.py \ --max_workers=1 \ --service_name=qwen-14b-test