检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:启动训练脚本新加DO_PROFILER=1和PROF_SA
登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界面,单击右上角“创建”,创建一个开发环境。创建Notebook的详细介绍可以参考创建Notebook实例,此处仅介绍关键步骤。 图1 创建Notebook 创建Notebook时,选择自定义镜像,并选择Step8 注册镜像章中注册的镜像。
kpoint机制是在模型训练的过程中,不断地保存训练结果(包括但不限于EPOCH、模型权重、优化器状态、调度器状态)。即便模型训练中断,也可以基于checkpoint接续训练。 当训练作业发生故障中断本次作业时,代码可自动从训练中断的位置接续训练,加载中断生成的checkpoin
登录ModelArts控制台,在贵阳一区域,进入开发环境的Notebook界面,单击右上角“创建”,创建一个开发环境。创建Notebook的详细介绍可以参考创建Notebook实例,此处仅介绍关键步骤。 图1 创建Notebook 创建Notebook时,选择自定义镜像,并选择Step8 注册镜像章中注册的镜像。
Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三 启动训练脚本 新加DO_PROFILER=1和PR
Profiler接口可全面采集PyTorch训练场景下的性能数据,主要包括PyTorch层算子信息、CANN层算子信息、底层NPU算子信息、以及算子内存占用信息等,可以全方位分析PyTorch训练时的性能状态。 录制命令如下: 在启动训练脚本基础:步骤三:启动训练脚本 新加DO_PROFILER=1和PR
WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据。在WebSocket API中,浏览器和服务器只需要完成一次握手,两者之间就可以建立持久性的连接,并进行双向数据传输。 前提条件 用户需有一定的Java开发经验,熟悉jar打包流程。 用户需了解WebSocket协议的基本概念及调用方法。
号是IAM用户或其他场景时,请参见《OBS权限配置指南 》> 典型场景配置案例,查找授予OBS桶权限的指导。 获得OBS桶的读写权限后,您可以在Notebook中,使用moxing接口,访问对应的OBS桶,并读取数据。举例如下: import moxing as mox mox.file
例数,配置完成后,单击“确认”提交扩缩容任务。 在“扩缩容服务”对话框,单击“确定”。 在“我的服务”页签,单击服务名称,进入服务详情页,可以查看修改后的实例数是否生效。 父主题: 管理我的服务
&& \ 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。 docker build
在代码目录下提供安装文件 如果使用“我的算法”创建训练作业,则在创建算法时,可以把相关文件放置在配置的“代码目录”下,算法的“启动方式”必须选择“预置框架”。 如果使用“自定义算法”创建训练作业,则可以把相关文件放置在配置的“代码目录”下,“启动方式”必须选择“预置框架”。 需要
-workers:设置数据处理使用执行卡数量 -append-eod:参数用于控制是否在每个输入序列的末尾添加一个特殊的标记。这个标记表示输入序列的结束,可以帮助模型更好地理解和处理长序列。 seq-length:是一个用于计算序列长度的函数。它接收一个序列作为输入,并返回序列的长度,需和训练时参数保持一致。
nsole控制台。当前推理基础镜像使用的python的log模块,采用的是默认的日志级别Warning,即当前只有Warning级别的日志可以默认查询出来。如果想要指定INFO等级的日志能够查询出来,需要在代码中指定logger的输出日志等级为INFO级别。 处理方法 在推理代码
调优经验:混推模式下全量能力大于增量能力时,PD分离部署会有收益。 如上图所示为Qwen2.5 32B、混推4实例、单实例2卡的性能场景。可以清晰的看出:全量时延TTFT随着request rate的变化几乎没有变化(左上图), 而增量时延TPOT随着request rate增加明显上升,并在1
言处理、图像生成和语音识别等。 Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。 易开发性:提供了友好的开发和调试环境,便于模型的调整和优化。 高性能:通过自研特性和针对NPU的优化,如PD分离、前后处
言处理、图像生成和语音识别等。 Ascend-vLLM的主要特点 易用性:Ascend-vLLM简化了在大模型上的部署和推理过程,使开发者可以更轻松地使用它。 易开发性:提供了友好的开发和调试环境,便于模型的调整和优化。 高性能:通过自研特性和针对NPU的优化,如PD分离、前后处
44.2 执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。 docker build
version 原因分析 出现该问题的可能原因如下: conda和pip包混装,有一些包卸载不掉。 处理方法 参考如下代码,三步走。 先卸载numpy中可以卸载的组件。 删除你环境中site-packages路径下的numpy文件夹。 重新进行安装需要的版本。 import os os.system("pip
而主账号没有给子账号赋SWR权限,子账号从SWR Console界面看不到该镜像,需要主账号给子账号在SWR侧赋予SWR权限,使得子账号可以看到该SWR镜像地址,否则该镜像子账号不可使用。 该镜像不属于该租户(包括主账号和子账号),是其他人共享的public镜像,而这个镜像又被
-workers:设置数据处理使用执行卡数量 -log-interval:是一个用于设置日志输出间隔的参数,表示输出日志的频率。在训练大规模模型时,可以通过设置这个参数来控制日志的输出 数据预处理后输出的训练数据如下: alpaca_text_document.bin alpaca_text_document