检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
<模型下载路径> 方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone
分如何计费,请您关注,避免造成不必要的资源浪费。 节点配置 数据标注参数配置 labeling_input:选择预先创建的数据集即可,版本可以不用选择。 task_name:填写需要创建的标注任务名称即可。 说明: 首次运行需要配置,会自动创建新的标注任务,后续不建议进行修改,使用同一个标注任务进行数据标注。
填写基本信息。基本信息包括“名称”、“版本”和“描述”。其中“版本”信息由系统自动生成,按“V0001”、“V0002”规则命名,用户无法修改。 您可以根据实际情况填写“名称”和“描述”信息。 图1 创建数据处理基本信息 设置场景类别。场景类别当前支持“图像分类”和“物体检测”。 设置数据
duration=1)] # (可选)设置在线服务运行时间 ) 参数“model_id”代表将部署成在线服务的模型。“model_id”可以通过查询模型列表或者ModelArts管理控制台获取。 部署服务到专属资源池 from modelarts.config.model_config
情况下,有的实例正常,有的实例异常。正常的实例会产生费用,此时服务状态是concerning。 failed:失败,服务部署失败,失败原因可以查看事件和日志标签。 stopped:停止。 finished:只有批量服务会有这个状态,表示运行完成。 sort_by 否 String
le的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,若指定则为per-token粒度量化,否则为per-tensor粒度量化。
le的过程。 --model-output:量化模型权重保存路径。 --smooth-strength:平滑系数,推荐先指定为0.5,后续可以根据推理效果进行调整。 --per-token:激活值量化方法,如果指定则为per-token粒度量化,否则为per-tensor粒度量化。
调用成功时无此字段。 job_total_count Integer 查询到的用户创建作业总数。 job_count_limit Integer 用户还可以创建训练作业的数量。 jobs jobs结构数组 训练作业的属性列表,具体请参见表4。 quotas Integer 训练作业的运行数量上限。
168.20.0/24重叠,否则会和专属资源池的网段发生冲突,因为专属资源池的默认网段为192.168.20.0/24。专属资源池实际使用的网段可以在资源池的详情页面查看“网络”获取。 条件二:SFS Turbo网段不能与172网段重叠,否则会和容器网络发生冲突,因为容器网络使用的是172网段。
= os.path.join(base_local_path, "train/") # 这里提前将训练脚本放在了obs中,实际上训练脚本可以是任何来源,只要能够放到Notebook里边就行 session.obs.download_file(os.path.join(base_bucket_path
|——megatron/ # 注意:该文件夹从Megatron-LM中复制得到 |——... 您可以在Notebook中导入完代码之后,在Notebook运行sh scripts/install.sh命令提前下载完整代码包和安装依赖包,然
dict required 参数是否必填标记。 默认required=True。 Delay参数不能设required=False。 运行时前端可以不填此参数。 否 bool 使用案例 int类型参数 from modelarts import workflow as wf wf.Pl
“数据增强”表示通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI POST /v2/{projec
查询作业排列顺序的指标。默认使用create_time排序。 order 否 String 查询作业排列顺序,默认为“desc”,降序排序。也可以选择对应的“asc”,升序排序。 缺省值:desc 枚举值: asc:升序 desc:降序 group_by 否 String 查询作业要搜索的分组条件。
10:30:00将专属资源池转为包年/包月计费,购买时长为1个月,1个月到期后用户将退订资源池。那么在3~4月份,该专属资源池总共产生多少费用呢? 计费构成分析 可以将专属资源池的使用阶段按照计费模式分为两段:在2023/03/18 15:30:00 ~ 2023/03/20 10:30:00期间为按需计费,2023/03/20
调用成功时无此字段。 job_total_count Integer 查询的可视化作业总数。 job_count_limit Integer 用户还可以创建可视化作业的数量。 jobs jobs结构数组 可视化作业的属性列表,具体请参见表4。 quotas Integer 可视化作业的运行数量上限。
景(4台8卡Vnt1),存储方案推荐使用“SFS(存放数据)+普通OBS桶(存放代码)”,采用分布式训练。 当使用SFS+OBS的存储方案可以实现存储加速,该方案的端到端实践案例请参见面向AI场景使用OBS+SFS Turbo的存储加速实践。 表1 不同场景所需服务及购买推荐 场景
“数据增强”表示通过简单的数据扩增例如缩放、裁剪、变换、合成等操作直接或间接的方式增加数据量。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project
启动脚本,建立线程池发送请求,并汇总结果 ├── service_predict.py # 发送请求的服务 执行精度测试启动脚本eval_test.py,具体操作命令如下,可以根据参数说明修改参数。 python eval_test.py \ --max_workers=1 \ --service_name=qwen-14b-test
训练任务的运行参数。格式为 [{"name":"your name", "value": "your value"}],value的值可以是string,也可以是int。 train_instance_type 是 String 训练作业选择的资源规格,请参考查询资源规格列表 train_instance_count