检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
标”,页面将自动呈现您选择对应版本及其指标数据,您可以根据呈现的图表了解数据分布情况,帮助您更好的理解您的数据。 “版本选择”:根据实际情况选择已执行过特征任务的版本,可以选多个进行对比,也可以只选择一个。 “类型”:根据需要分析的类型选择。支持“all”、“train”、“ev
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
本案例用于指导用户使用ModelArts Studio大模型即服务平台(下面简称为MaaS)的Qwen2-7B模型框架,创建并部署一个模型服务,实现对话问答。通过学习本案例,您可以快速了解如何在MaaS服务上的创建和部署模型。更多MaaS服务的使用指导请参见用户指南。 操作流程 开始使用如下样例前,请务必按准备工作指导完成必要操作。
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
“test-modelartsz/output-flower”。 “超参”:建议采用默认值。 “资源类型”:可以选择限时免费的GPU规格资源,如果希望训练效率更高,可以选择收费的GPU资源。 “计算节点个数”:建议采用默认值1。 参数填写完成后,单击“提交”,根据界面提示确认规格,单击“确定”,完成训练作业创建。
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
c0d,您也可以根据实际情况填写“名称”和“描述”信息等。 填写服务参数。包含资源池、模型配置等关键信息。 表1 参数说明 参数名称 说明 “资源池” “公共资源池” 公共资源池有CPU或GPU两种规格。如需使用,需联系管理员创建公共资源池。 “专属资源池” 您可以在资源池规格中选择对应的规格进行使用。
npu-smi info # 在每个实例节点上运行此命令可以看到NPU卡状态 npu-smi info -l | grep Total # 在每个实例节点上运行此命令可以看到总卡数 如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其
容器名称,进入容器时会用到,此处可以自己定义一个容器名称,例如webui。 --device=/dev/davinci3:挂载主机的/dev/davinci3到容器的/dev/davinci3。可以使用npu-smi info查看空闲卡号,修改davinci后数字可以更改挂载卡。 若需要启
任意长宽比高清图像高效编码。 MiniCPM-V2.0可以接受180万像素的任意长宽比图像输入(基于最新的 LLaVA-UHD 技术),这使得模型可以感知到小物体、密集文字等更加细粒度的视觉信息。 高效部署。MiniCPM-V2.0可以高效部署在大多数消费级显卡、个人电脑以及移动手机等终端设备。
“ATMOST”表示安装包版本不大于给定版本。 说明: 如果对版本有明确要求,优先使用“EXACT”;如果使用“EXACT”与系统安装包有冲突,可以选择“ATLEAST” 如果对版本没有明确要求,推荐不填写“restraint”、“package_version”,只保留“package_name”参数
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
├──benchmark_tools #性能评测 ├── benchmark.py # 可以基于默认的参数跑完静态benchmark和动态benchmark ├── benchmark_parallel.py # 评测静态性能脚本
Jupyter可以安装插件吗? Jupyter可以安装插件。 目前jupyter插件多数采用wheel包的形式发布,一次性完成前后端插件的安装,安装时注意使用jupyter服务依赖的环境“/modelarts/authoring/notebook-conda/bin/pip”进行
建Notebook、训练作业、推理在线服务)时,可以为这些任务配置标签,通过标签实现资源的多维分组管理。 标签详细用法请参见ModelArts如何通过标签实现资源分组管理。 说明: 可以在标签输入框下拉选择TMS预定义标签,也可以自己输入自定义标签。预定义标签对所有支持标签功能的
/test 出现如下信息则表示校验通过。 Verification successful 步骤二:准备数据 准备算法 此处以订阅算法举例,您也可以自己准备算法。 从AI Gallery订阅一个图像分类的算法进入AI Gallery>资产集市>算法,搜索自动学习算法-图像分类。 单击算法右侧的“订阅”。
Serving是一个灵活、高性能的机器学习模型部署系统,提供模型版本管理、服务回滚等能力。通过配置模型路径、模型端口、模型名称等参数,原生TFServing镜像可以快速启动提供服务,并支持gRPC和HTTP Restful API的访问方式。 Triton是一个高性能推理服务框架,提供HTTP/gRP
Notebook中的EVS存储可以使用套餐包吗? 无法使用套餐包。 父主题: 计费相关
ModelArts AI识别可以单独针对一个标签识别吗? 标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: 一般性问题