检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
气象类加工算子介绍 平台支持气象类数据集的加工操作,气象类加工算子能力清单见表1。 表1 气象类加工算子能力清单 算子分类 算子名称 算子描述 科学计算 气象预处理 将二进制格式的气象数据文件转换成结构化JSON数据。 父主题: 数据集加工算子介绍
图片类加工算子介绍 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、转换、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台提供了图文类、图片类加工算子,算子能力清单见表1。 表1 图片类加工算子能力清单 算子分类
视频类加工算子介绍 数据加工算子为用户提供了多种数据操作能力,包括数据提取、过滤、打标签等。这些算子能够帮助用户从海量数据中提取出有用信息,并进行深度加工,以生成高质量的训练数据。 平台支持视频类数据集的加工操作,分为数据提取、数据过滤、数据打标三类,视频类加工算子能力清单见表1。
数据量足够,为什么盘古大模型微调效果仍然不好 这种情况可能是由于以下原因导致的,建议您排查: 数据质量:请检查训练数据的质量,若训练样本和目标任务不一致或者分布差异较大、样本中存在异常数据、样本的多样性较差,都将影响模型训练的效果,建议提升您的数据质量。 父主题: 大模型微调训练类
辨率、水平分辨率以及区域范围,适用于想自定义自己的区域模型的场景,需预先准备好区域高精度数据。 微调:在已有模型的基础上添加新数据,它适用于不改变模型结构参数和引入新要素的情况,添加最新数据的场景。 本实践将以平台预置的区域海洋要素基模型为例,介绍盘古科学计算大模型的微调训练过程,该模型的基本信息详见表1。
导入数据过程中,为什么无法选中OBS的单个文件进行上传 当前,ModelArts Studio平台针对不同类别的数据集可使用OBS服务导入的文件形式不同: 文本、视频、预测和其他类(自定义)数据集支持文件夹或单个文件导入,导入界面提示用户:“请选择文件夹或文件”。 图1 支持导入单个文件示例
ObsStorageDto objects 输入数据的OBS信息。 表5 ObsStorageDto 参数 是否必选 参数类型 描述 bucket 是 String 输入数据的OBS桶名称。 path 是 String 初始场数据的存放路径。 表6 TaskOutputDto 参数
它从未标记的数据中提取监督信号,属于无监督学习的一个子集。该方法通过创建“预设任务”让模型从数据中学习,从而生成有用的表示,可用于后续任务。它无需额外的人工标签数据,因为监督信号直接从数据本身派生。 有监督学习 有监督学习是机器学习任务的一种。它从有标记的训练数据中推导出预测函
盘古NLP大模型是业界首个超千亿参数的中文预训练大模型,结合了大数据预训练和多源知识,借助持续学习不断吸收海量文本数据,持续提升模型性能。除了实现行业知识检索、文案生成、阅读理解等基础功能外,盘古NLP大模型还具备模型调用等高级特性,可在智能客服、创意营销等多个典型场景中,提供强大的AI技术支持。 ModelArts
微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数据,将问答对数据分为:单轮问答数据、多轮问答
产品优势 预置多,数据工程“易” ModelArts Studio大模型开发平台预置多种数据处理AI算子,多种标注工具,满足用户多任务多场景需求,提高开发/标注效率>10X。 0代码,模型开发“简” ModelArts Studio大模型开发平台预置盘古系列预训练大模型,支持快速
数据量和质量均满足要求,为什么盘古大模型微调效果不好 这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或
构建的优点是数据丰富度更高,缺点是成本较高。 当您将无监督数据构建为有监督数据时,请尽可能保证数据的多样性。建议将不同文本构建为不同的场景,甚至将同一段文本构建为多个不同的场景。 不同规格的模型支持的长度不同,当您将无监督数据构建为有监督数据时,请确保数据长度符合模型长度限制。 父主题:
适用于数据加工,用于正则类算子加工。 不同数据加工算子所需数据资源类型详见数据集加工算子介绍。 按需(时长)计费、包年/包月 ModelArts Studio-数据智算单元 适用于数据加工,用于AI类算子加工。 不同数据加工算子所需数据资源类型详见数据集加工算子介绍。 按需(时长)计费、包年/包月
进行选择。 数据配置 训练数据 选择数据集中已发布的数据集,这里数据集需为再分析类型数据,同时需要完成加工作业,加工时需选择气象预处理算子。 训练集 选择训练数据中的部分时间数据,训练数据集尽可能多一些。 验证集 选择验证集中的部分时间数据,验证集数据不能跟训练集数据重合。 层次
应用场景 客服 通过NLP大模型对传统的客服系统进行智能化升级,提升智能客服的效果。企业原智能客服系统仅支持回复基础的FAQ,无语义泛化能力,意图理解能力弱,转人工频率极高。面对活动等时效性场景,智能客服无回答能力。提高服务效率:大模型智能客服可以7x24小时不间断服务,相较于人
盘古科学计算大模型能力与规格 盘古科学计算大模型面向气象、医药、水务、机械、航天航空等领域,融合了AI数据建模和AI方程求解方法。该模型从海量数据中提取数理规律,利用神经网络编码微分方程,通过AI模型更快速、更精准地解决科学计算问题。 ModelArts Studio大模型开发平台为用户
盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加密、审计和数据主权保护等机制。在训练和推理过程中,通过数据脱敏、隐私计算
如何判断盘古大模型训练状态是否正常 为什么微调后的盘古大模型评估结果很好,但实际场景表现很差 数据量足够,为什么盘古大模型微调效果仍然不好 大模型使用类问题 如何将本地的数据上传至平台 导入数据过程中,为什么无法选中OBS的单个文件进行上传 训练/推理单元与算力的对应关系是什么 提示词工程类
Agent开发平台是基于NLP大模型,致力打造智能时代集开发、调测和运行为一体的AI应用平台。无论开发者是否拥有大模型应用的编程经验,都可以通过Agent平台快速创建各种类型的智能体。Agent开发平台旨在帮助开发者高效低成本的构建AI应用,加速领域和行业AI应用的落地。 针对“零码”开发者(无代码开发经验)