检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Pytorch Mox日志反复输出 问题现象 ModelArts训练作业算法来源选用常用框架的Pytorch引擎,在训练作业运行时Pytorch Mox日志会每个epoch都打印Mox版本,具体日志如下: INFO:root:Using MoXing-v1.13.0-de803ac9
例可以正常使用。 表16 user 参数 参数类型 描述 domain domain object 账号domain信息 id String IAM用户ID name String IAM用户名 表17 domain 参数 参数类型 描述 id String 账号ID name String
打开Notebook实例 进入JupyterLab页面后,自动打开Launcher页面,如下图所示。 图2 JupyterLab主页 不同AI引擎的Notebook,打开后Launcher页面呈现的Notebook和Console内核及版本均不同,图2仅作为示例,请以实际控制台为准。
面向熟悉代码编写和调测,熟悉常见AI引擎的开发者,ModelArts不仅提供了在线代码开发环境,还提供了从数据准备、模型训练、模型管理到模型部署上线的端到端开发流程(即AI全流程开发)。 本文档介绍了如何在ModelArts管理控制台完成AI开发,如果您习惯使用API或者SDK进行开发,建议查看《ModelArts
Get job details. Example: # Get train job details by job name ma-cli ma-job get-job -n ${job_name} # Get train job details by job id
自动学习 物体检测 基于AI Gallery口罩数据集,使用ModelArts自动学习的物体检测算法,识别图片中的人物是否佩戴口罩。 垃圾分类 自动学习 图像分类 该案例基于华为云AI开发者社区AI Gallery中的数据集资产,让零AI基础的开发者完成“图像分类”的AI模型的训练和部署。
activate TensorFlow-1.8 如果需要在其他python环境里安装,请将命令中“TensorFlow-1.8”替换为其他引擎。 在代码输入栏输入以下命令安装Shapely。 pip install Shapely 父主题: Standard Notebook
经下载的原始数据存放在/home/ma-user/ws/training_data目录下。具体步骤如下: 进入到/home/ma-user/ws/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下:
py ##复制输出结果到OBS目录。 TRAIN_URL=`echo ${DLS_TRAIN_URL} | sed /s/s3/obs/` /opt/utils/obsutil cp –r –f /cache/out ${TRAIN_URL} 把run.sh放到/opt目录,
2的镜像,官方如果没有提供对应的PyTorch或者Cuda版本的镜像,优选一个没有PyTorch环境或没有安装Cuda的镜像,而不是选择一个PyTorch引擎和Cuda都不满足的镜像,如MindSpore+Cuda11.X,这样基础镜像就会很大,同样的操作最终目的镜像就很大。 此外下面举出几种常见的减少镜像大小的方式。
使用WebSocket协议的方式访问在线服务 背景说明 WebSocket是一种网络传输协议,可在单个TCP连接上进行全双工通信,位于OSI模型的应用层。WebSocket协议在2011年由IETF标准化为RFC 6455,后由RFC 7936补充规范。Web IDL中的WebSocket
创建训练作业时,训练支持的AI引擎及对应版本如下所示。 预置引擎命名格式如下: <训练引擎名称_版本号>-[cpu | <cuda_版本号 | cann_版本号 >]-<py_版本号>-<操作系统名称_版本号>-< x86_64 | aarch64> 表4 训练作业支持的AI引擎 工作环境 系统架构
args') sys.exit(1) train_command = sys.argv[1:] log.info('training command') log.info(train_command) if os.environ.get(RankTableEnv
7-ubuntu_1804-x86_64 不同区域支持的AI引擎有差异,请以实际环境为准。 训练基础镜像详情(PyTorch) 介绍预置的PyTorch镜像详情。 引擎版本:pytorch_1.8.0-cuda_10.2-py_3.7-ubuntu_18.04-x86_64 引擎版本:pytorch_1.8
datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data() x_train, x_test = x_train / 255.0, x_test / 255.0 print(x_train.shape) from
自定义镜像的大小推荐15GB以内,最大不要超过资源池的容器引擎空间大小的一半。镜像过大会直接影响训练作业的启动时间。 ModelArts公共资源池的容器引擎空间为50G,专属资源池的容器引擎空间的默认为50G,支持在创建专属资源池时自定义容器引擎空间。 自定义镜像的默认用户必须为“uid”为“1000”的用户。
制作自定义镜像并用于训练(MPI+CPU/GPU) 本章节介绍如何从0到1制作镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MPI,训练使用的资源是CPU或GPU。 本实践教程仅适用于新版训练作业。 场景描述 本示例使用Linux x86_64架构的主机,操作系统ubuntu-18
print(x) available_dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") y = torch.randn(5, 3).to(available_dev) print(y)
模型的自定义镜像制作流程 如果您使用了ModelArts不支持的AI引擎开发模型,也可通过制作自定义镜像,导入ModelArts创建为模型,并支持进行统一管理和部署为服务。 制作流程 场景一: 预置镜像的环境软件满足要求,只需要导入模型包,就能用于创建模型,通过镜像保存功能制作。
正常情况下,可以观察到响应头Content-Type为text/event-stream;charset=UTF-8。 父主题: 访问在线服务支持的传输协议