检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
将下载的原始数据存放在/home/ma-user/ws/training_data目录下。具体步骤如下: 进入到/home/ma-user/ws/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: $
/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: ${workdir} |── training_data
/local/Ascend/nnae/latest/opp/op_impl/built-in/ai_core/tbe \ ASCEND_AICPU_PATH=$ASCEND_AICPU_PATH:/usr/local/Ascend/nnae/latest \ AS
将下载的原始数据存放在/home/ma-user/ws/training_data目录下。具体步骤如下: 进入到/home/ma-user/ws/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: $
train_labels += labels train_filenames += filenames train_data = np.concatenate(train_data_record, axis=0) train_labels
只允许放置一个,customize_service.py依赖的文件可以直接放model目录下 Custom模型包结构,与您自定义镜像中AI引擎有关。例如自定义镜像中的AI引擎为TensorFlow,则模型包采用TensorFlow模型包结构。 父主题: 创建模型规范参考
13b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://<bucket_name>/training_data |── train-00000-of-0
13b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://<bucket_name>/training_data |── train-00000-of-0
13b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://<bucket_name>/training_data |── train-00000-of-0
13b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://<bucket_name>/training_data |── train-00000-of-0
13b中创建文件夹training_data。 利用OBS Browser+工具将步骤1下载的数据集上传至步骤2创建的文件夹目录下。得到OBS下数据集结构: obs://<bucket_name>/training_data |── train-00000-of-0
将下载的原始数据存放在/home/ma-user/ws/training_data目录下。具体步骤如下: 进入到/home/ma-user/ws/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: $
下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/training_data目录下。 通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具。数据存放参考目录: /mnt/sfs_turbo/training_data
/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: ${workdir} |── training_data
下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/training_data目录下。 通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具。数据存放参考目录: /mnt/sfs_turbo/training_data
/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: ${workdir} |── training_data
下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/training_data目录下。 通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具。数据存放参考目录: /mnt/sfs_turbo/training_data
Creating”、“Queuing”、“Running”、“Failed”、“Completed”、“Terminating”、“Terminated”、“CreateFailed”、“TerminatedFailed”、“Unknown”、“Lost”。 duration Long
/training_data目录下。具体步骤如下: 进入到/mnt/sfs_turbo/目录下。 创建目录“training_data”,并将原始数据放置在此处。 mkdir training_data 数据存放参考目录结构如下: ${workdir} |── training_data
下。创建目录“training_data”,将原始数据存放在/mnt/sfs_turbo/training_data目录下。 通过拖拽文件的方式,上传文件。使用CloudShell或者其它SSH远程工具。数据存放参考目录: /mnt/sfs_turbo/training_data