检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
processor.selector=random Flume多agent聚合级联时的注意事项? 级联时需要使用Avro或者Thrift协议进行级联。 聚合端存在多个节点时,连接配置尽量配置均衡,不要聚合到单节点上。 父主题: 使用Flume
配置用户在具有读和执行权限的目录中创建外表 配置基于HTTPS/HTTP协议的REST接口 配置Hive Transform功能开关 切换Hive执行引擎为Tez Hive负载均衡 配置Hive单表动态视图的访问控制权限 配置创建临时函数的用户不需要具有ADMIN权限 配置具备表select权限的用户可查看表结构
ContainerExecutor.java:300 回答 由于当前数据量较大,有50T数据导入,超过了shuffle的规格,shuffle负载过高,shuffle service服务处于过载状态,可能无法及时响应Executor的注册请求,从而出现上面的问题。 Executor注册shuffle
创建Storm Bolt 功能介绍 所有的消息处理逻辑都被封装在各个Bolt中。Bolt包含多种功能:过滤、聚合等。 如果Bolt之后还有其他拓扑算子,可以使用OutputFieldsDeclarer.declareStream定义Stream,使用OutputCollector
创建Storm Bolt 功能介绍 所有的消息处理逻辑都被封装在各个Bolt中。Bolt包含多种功能:过滤、聚合等等。 如果Bolt之后还有其他拓扑算子,可以使用OutputFieldsDeclarer.declareStream定义Stream,使用OutputCollector
groupBy("a").agg(...)操作中,不允许分组键或聚合键的类型或者数量发生变化。 Streaming deduplication:如:sdf.dropDuplicates("a")操作中,不允许分组键或聚合键的类型或者数量发生变化。 Stream-stream join:如sdf1
groupBy("a").agg(...)操作中,不允许分组键或聚合键的类型或者数量发生变化。 Streaming deduplication:如:sdf.dropDuplicates("a")操作中,不允许分组键或聚合键的类型或者数量发生变化。 Stream-stream join:如sdf1
groupBy("a").agg(...)操作中,不允许分组键或聚合键的类型或者数量发生变化。 Streaming deduplication:如:sdf.dropDuplicates("a")操作中,不允许分组键或聚合键的类型或者数量发生变化。 Stream-stream join:如sdf1
threadpool.size 多路读取线程池的大小,设置参数值大于0时启用多路读功能。 200 大于等于0 由于HDFS多路读功能在磁盘IO负载高的情况下可能导致性能劣化,在此场景下,HBase侧需要参考操作步骤关闭HDFS多路读功能。 操作步骤 登录FusionInsight Manager页面。
上报成功(处于COMPLETED状态)。因此HDFS的一部分写性能消耗为等待DataNode块上报以及NameNode处理块上报。对于一个负载较大的集群,等待的消耗对集群影响较大。HDFS可以通过配置NameNode参数“dfs.namenode.file.close.num-c
memstore.size”(见表1)的介绍进行设置。 “-XX:NewSize”与“-XX:MaxNewSize”设置相同值,建议低负载场景下设置为“512M”,高负载场景下设置为“2048M”。 “-XX:CMSInitiatingOccupancyFraction”建议设置为“100 *
L查询和有高耗时的算子(连接, 聚合等算子)的SQL通过建立物化视图进行预计算,然后在查询的SQL中将能匹配到物化视图的查询或者子查询转换为物化视图,避免了数据的重复计算,这种情况下往往能较大地提高查询的响应效率。 物化视图通常基于对数据表进行聚合和连接的查询结果创建。 物化视图
创建Strom Bolt 功能介绍 所有的消息处理逻辑都被封装在各个Bolt中。Bolt包含多种功能:过滤、聚合等等。 如果Bolt之后还有其他拓扑算子,可以使用OutputFieldsDeclarer.declareStream定义Stream,使用OutputCollector
groupBy("a").agg(...)操作中,不允许分组键或聚合键的类型或者数量发生变化。 Streaming deduplication:如:sdf.dropDuplicates("a")操作中,不允许分组键或聚合键的类型或者数量发生变化。 Stream-stream join:如sdf1
降低MapReduce客户端运行任务失败率 配置场景 当网络不稳定或者集群IO、CPU负载过高的情况下,通过调整如下参数值,降低客户端应用的失败率,保证应用的正常运行。 配置描述 在客户端的“mapred-site.xml”配置文件中调整如下参数。 “mapred-site.xm
memstore.size”(见表1)的介绍进行设置。 -XX:NewSize与-XX:MaxNewSize设置相同值,建议低负载场景下设置为“512M”,高负载场景下设置为“2048M”。 -XX:CMSInitiatingOccupancyFraction建议设置为“100 * (hfile
降低MapReduce客户端运行任务失败率 配置场景 当网络不稳定或者集群IO、CPU负载过高的情况下,通过调整如下参数值,降低客户端应用的失败率,保证应用的正常运行。 配置描述 在客户端的“mapred-site.xml”配置文件中调整如下参数。 “mapred-site.xm
明细模型是StarRocks默认的建表模型。如果在建表时未指定任何模型,默认创建明细类型的表。 聚合模型 建表时,支持定义排序键和指标列,并为指标列指定聚合函数。当多条数据具有相同的排序键时,指标列会进行聚合。在分析统计和汇总数据时,聚合模型能够减少查询时所需要处理的数据,提升查询效率。 更新模型 建表时,
IoTDB客户端只能连接一个IoTDBServer,大量并发使用同一个客户端会对该客户端连接的IoTDBServer造成压力,可以根据业务需求连接多个不同的客户端来达到负载均衡。 使用SessionPool复用连接 分布式在Session内部做了缓存,实现客户端时避免每次读写都新建Session,或者使用SessionPool进行复用连接。
服务器,没有共享状态,因此您可以根据需要运行任意数量的TSD来处理您向其投入的任何负载。每个TSD使用CloudTable集群中的HBase来存储和检索时间序列数据。数据模式经过高度优化,可快速聚合相似的时间序列,从而最大限度地减少存储空间。TSD的用户不需要直接访问底层存储。您可以通过HTTP