检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建模型失败,提示模型镜像构建任务超时,没有构建日志 问题现象 创建模型失败,构建日志提示超时“Model image build task timed out”,没有详细构建日志。 图1 模型镜像构建任务超时 原因分析 imagePacker构建镜像有超时时间限制,默认值为30
使用MaaS部署模型服务 在ModelArts Studio大模型即服务平台可以将模型部署为服务,便于在“模型体验”或其他业务环境中可以调用。 约束限制 部署模型服务时,ModelArts Studio大模型即服务平台预置了推理的最大输入输出长度。模型Qwen-14B默认是204
guided-decoding 什么是guided-decoding Guided Decoding是一种用于生成文本的策略,通过提供额外的上下文或约束,来引导模型生成更符合预期的结果。 比如使用openai启动服务,通过配置guided_json参数使用JSON Schema的架构来举例。
py --base-path 大模型权重地址 --draft-path 小模型权重地址 --base-weight-name 大模型包含lm_head的权重文件名 --draft-weight-name 小模型权重文件名 --base-path:为大模型权重地址,例如 ./llama2-7b-chat
准备代码 本教程中用到的训练推理代码和如下表所示,请提前准备好。 获取模型软件包和权重文件 本方案支持的模型对应的软件和依赖包获取地址如表1所示,模型列表、对应的开源权重获取地址如表1所示。 表1 模型对应的软件包和依赖包获取地址 代码包名称 代码说明 下载地址 AscendCloud-6
mc2融合算子报错 Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training
mc2融合算子报错 Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training
构建模型 自定义模型规范 自定义镜像规范 使用AI Gallery SDK构建自定义模型 父主题: 发布和管理AI Gallery模型
准备环境 本文档中的模型运行环境是ModelArts Lite的Cluster或DevServer。请参考本文档要求准备资源环境。 资源规格要求 计算规格:对于Qwen-7B和Qwen-14B单机训练需要使用单机8卡,多机训练需要使用2机16卡。对于Qwen-72B至少需要5机4
--local-dir <模型下载路径> 如果要下载指定版本的模型文件,则命令如下: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf --revision <模型版本> --local-dir
--local-dir <模型下载路径> 如果要下载指定版本的模型文件,则命令如下: huggingface-cli download --resume-download meta-llama/Llama-2-70b-chat-hf --revision <模型版本> --local-dir
5000 指定模型训练过程中,每多少步保存一次模型。保存的模型可以用于后续的训练。 当参数值>=max_steps时,生成模型仅保存经过TRAIN_ITERS次训练后的最后一个版本。 当参数值<max_steps时,生成模型会每经过save_steps次,保存一次模型版本。 模型版本保存
model_args:标志向模型构造函数提供额外参数,比如指定运行模型的数据类型; vllm_path是模型权重路径; max_model_len 是最大模型长度,默认设置为4096; gpu_memory_utilization是gpu利用率,如果模型出现oom报错,调小参数;
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.906)
解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本 GLM4-9B模型,容器内执行以下步骤: pip install transformers==4.43.2 其它模型,容器内执行以下步骤: pip install transformers==4.45.0 pip
首token的耗时 model_prefill_latency(模型计算首token时延):服务从开始计算首token到生成首token的耗时 avg_decode_latency(平均增量token时延):服务计算增量token的平均耗时 time_in_queue(请求排队时
首token的耗时 model_prefill_latency(模型计算首token时延):服务从开始计算首token到生成首token的耗时 avg_decode_latency(平均增量token时延):服务计算增量token的平均耗时 time_in_queue(请求排队时
在MaaS中创建模型 在ModelArts Studio大模型即服务平台使用基础模型创建个人专属模型。 场景描述 MaaS提供了基于昇腾云算力适配的开源大模型,您可以使用这些基础模型,结合自定义的模型权重文件,创建个人专属的模型。 创建成功的模型可以在ModelArts Stud
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.907)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)