检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
专属资源池需单独创建,不与其他租户共享。 公共资源池 规格 选择规格,规格中描述了服务器类型、型号等信息,仅显示模型支持的资源。 xxx 计算节点个数 当计算节点个数大于1,将启动多节点分布式训练。详细信息,请参见分布式训练功能介绍。 1 更多选项 永久保存日志 选择是否打开“永久保存日志”开关。
同时,您开发的代码,也可通过CodeLab快速分享到AI Gallery中给他人使用学习。 使用限制 CodeLab默认打开,使用的是CPU计算资源。如需切换为GPU,请在右侧窗口,更换GPU规格。 在ModelArts控制台的“总览”界面打开CodeLab,使用的是CPU或GPU资源,无法使用Ascend资源。
fp16/bf16 true 使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中
fp16/bf16 true 使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中
Lite的Cluster环境中部署ComfyUI,使用NPU卡进行推理。 方案概览 本方案介绍了在ModelArts的Lite Cluster上使用昇腾计算资源部署ComfyUI用于推理的详细过程。完成本方案的部署,需要先联系您所在企业的华为方技术支持购买Cluster资源。 本方案目前仅适用
键字、系统日志过滤能力。 预览 系统日志窗口提供训练日志预览功能,如果训练作业有多个节点,则支持查看不同计算节点的日志,通过右侧下拉框可以选择目标节点预览。 图4 查看不同计算节日志 当日志文件过大时,系统日志窗口仅加载最新的部分日志,并在日志窗口上方提供全量日志访问链接。打开该链接可在新页面查看全部日志。
映射规则:当前不支持CPU配置cache盘;GPU与昇腾资源为单卡时,cache目录保持500G大小限制;除单卡外,cache盘大小与卡数有关,计算方式为卡数*500G,上限为3T。详细表1所示。 表1 不同Notebook规格资源“/cache”目录的大小 规格类别 cache盘大小
负责reducer的GPU更新模型参数后分发到不同的GPU,因此有较大的通信开销。 GPU负载不均衡:负责reducer的GPU需要负责汇总输出、计算损失和更新权重,因此显存和使用率相比其他GPU都会更高。 DistributedDataParallel进行多机多卡训练的优缺点 通信更快:相比于DP,通信速度更快
fp16/bf16 true 使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中
推理部署功能模块涉及到的用户模型文件和发布到AIGallery的资产在上传过程中,有可能会因为网络劫持、数据缓存等原因,存在数据不一致的问题。ModelArts提供通过计算SHA256值的方式对上传下载的数据进行一致性校验。 数据隔离机制 在ModelArts的开发环境中创建Notebook实例时,数据存储是按照租户隔离,租户之间互相看不到数据。
fp16/bf16 true 使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中
教学用户,提供更好云化AI开发体验。 ModelArts Standard Notebook云上云下,无缝协同 代码开发与调测。云化JupyterLab使用,本地IDE+ModelArts插件远程开发能力,贴近开发人员使用习惯 云上开发环境,包含AI计算资源,云上存储,预置AI引擎
--image-feature-size:图片输入解析维度大小;llava-v1.6图片输入维度与image-feature-size关系映射表见git;计算原理如下: 最小处理单元为14*14 【llava1.5】 336*336图像 ==(336/14=24)>> 24*24=576 672*672图像
可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:CPU架构必须选择鲲鹏计算,镜像推荐选择EulerOS。 图1 购买ECS Step2 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装
直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE(VS Code)开发模型。 父主题: 云上迁移适配故障
功能而备受青睐。此外,vLLM还具备投机推理和自动前缀缓存等关键功能,使其在学术界和工业界都得到了广泛应用。 Ascend-vLLM是华为云针对NPU优化的推理框架,继承了vLLM的优点,并通过特定优化实现了更高的性能和易用性。它使得在NPU卡上运行大模型变得更加高效和便捷,为用
fp16/bf16 true 使用混合精度格式,减少内存使用和计算需求。二者选其一 learning_rate 2.0e-5 指定学习率 disable_gradient_checkpointing true 关闭重计算,用于禁用梯度检查点,默认开启梯度检查点;在深度学习模型训练中
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity
可调整参数:SEQ_LEN要处理的最大的序列长度(seq-length),参数值过大很容易发生显存溢出的错误。 可添加参数:在3_training.sh文件中添加开启重计算的参数。其中recompute-num-layers的值为模型网络中num-layers的参数值。 --recompute-granularity