检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Spark与其他组件的关系 Spark和HDFS的关系 通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。 分解来看,Spark分成控制端(Dr
Spark2x与其他组件的关系 Spark和HDFS的关系 通常,Spark中计算的数据可以来自多个数据源,如Local File、HDFS等。最常用的是HDFS,用户可以一次读取大规模的数据进行并行计算。在计算完成后,也可以将数据存储到HDFS。 分解来看,Spark分成控制端(Dr
Flink应用开发简介 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pipeline处理数据,时延毫秒级,且兼具可靠性。 Flink整个系统包含三个部分:
特性简介 MRS集群支持创建Task节点,只作为计算节点,不存放持久化的数据,是实现弹性伸缩的基础。 客户价值 在MRS服务只作为计算资源的场景下,使用Task节点可以节省成本,并可以更加方便快捷地对集群节点进行扩缩容,满足用户对集群计算能力随时增减的需求。 用户场景 当集群数据量变
快速开发Flink应用 Flink是一个批处理和流处理结合的统一计算框架,其核心是一个提供了数据分发以及并行化计算的流数据处理引擎。它的最大亮点是流处理,是业界最顶级的开源流处理引擎。 Flink最适合的应用场景是低时延的数据处理(Data Processing)场景:高并发pi
ClickHouse集群架构图 从横向来看ClickHouse数据库集群,所有数据都会平均分布到多个shard分片中进行保存,数据平均分布后,保证了查询的高度并行性,以提升数据的查询性能。 从纵向来看,每个shard内部有多个副本组成,保证分片数据的高可靠性,以及计算的高可靠性。 数据分布设计
WebHCat Server还对外提供了RESTful接口,如图2所示。 图2 WebHCat的逻辑架构图 Hive原理 Hive作为一个基于HDFS和MapReduce架构的数据仓库,其主要能力是通过对HQL(Hive Query Language)编译和解析,生成并执行相应
的Task来同时计算,以增强系统的处理能力。 图2 Topology Storm有众多适用场景:实时分析、持续计算、分布式ETL等。Storm有如下几个特点: 适用场景广泛 易扩展,可伸缩性高 保证无数据丢失 容错性好 易于构建和操控 多语言 Storm作为计算平台,在业务层为用
配置内存 操作场景 Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的GC情况(在客户端的conf/spark-defaults
在用户对集群进行扩容ClickHouse节点时,可以使用该工具将原节点上的部分数据迁移至新增节点上,从而达到扩容后的数据均衡。 高可用HA部署架构 MRS服务提供了基于ELB的HA部署架构,可以将用户访问流量自动分发到多台后端节点,扩展系统对外的服务能力,实现更高水平的应用容错。如图3所示,客户端应用请求集群时,使用ELB(Elastic
Spark Core内存调优 操作场景 Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的GC情况(在客户端的conf/spark-default
当使用Flink的Full outer Join算子实现宽表拼接功能时,由于状态会被多次重复存储导致状态后端压力大,计算性能差。使用MultiJoin算子进行宽表拼接计算性能可以提升1倍。 FlinkSQL支持MultiJoin算子使用限制 MultiJoin算子只支持FULL OUTER
IaaS基础设施资源费用(弹性云服务器,云硬盘,弹性IP/带宽等) MRS服务管理费用详情,请参见产品价格详情。 您可以通过MRS提供的价格计算器,选择您需要的集群节点规格,来快速计算出购买MRS集群的参考价格。 MRS集群删除或退订后不再产生费用。 计费模式 使用MRS的首要操作就是购买MRS集群,MRS当前支持包年包月和按需计费模式。
优化Flink内存GC参数 操作场景 Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的YARN的Container
Ranger权限,可参考添加HetuEngine的Ranger访问权限策略。 创建HetuEngine计算实例。 创建计算实例并确保运行正常,可参考创建HetuEngine计算实例。 步骤二:获取JDBC jar包 登录FusionInsight Manager。 选择“集群 >
优化Flink内存GC参数 操作场景 Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的YARN的Container
Yarn与其他组件的关系 Yarn和Spark组件的关系 Spark的计算调度方式,可以通过Yarn的模式实现。Spark共享Yarn集群提供丰富的计算资源,将任务分布式的运行起来。Spark on Yarn分两种模式:Yarn Cluster和Yarn Client。 Yarn
Spark Core内存调优 操作场景 Spark是内存计算框架,计算过程中内存不够对Spark的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存中RDD的大小来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的GC情况(在客户端的conf/spark-default
ce程序中计算的数据可以来自多个数据源,如Local FileSystem、HDFS、数据库等。最常用的是HDFS,可以利用HDFS的高吞吐性能读取大规模的数据进行计算。同时在计算完成后,也可以将数据存储到HDFS。 HDFS和Spark的关系 通常,Spark中计算的数据可以来自多个数据源,如Local
Flink应用性能调优建议 配置内存 Flink是依赖内存计算,计算过程中内存不够对Flink的执行效率影响很大。可以通过监控GC(Garbage Collection),评估内存使用及剩余情况来判断内存是否变成性能瓶颈,并根据情况优化。 监控节点进程的YARN的Container